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Excited states in the limit of large dimensionality
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I. INTRODUCTION

The limit of large dimensionality was studied by Loeser [1] for a general case of N -

electron atom, where two coefficients of 1/D series were derived. Using analytic expressions

constructed on the basis of two terms of 1/D-expansion, Loeser calculated ground state

energies of all atoms with accuracy of order of 1%. On another hand, the 1/D-expansion

for hydrogen atom was known to be convergent for D > 1, and the first three terms of

1/D-expansion for helium atom show the convergence similar to the hydrogen atom [2, 3].

Thus, Mlodinow and Papanicolaou [2] pointed out that the accuracy for D = 3 can be

improved by including higher terms of the series. Mlodinow and Papanicolaou [2] were able

to calculate the first anharmonic correction going beyond a simple harmonic approximation.

However, their method [4] which was originally used in 1/N -expansion in statistical physics

is less convenient for calculating higher order terms of the 1/D series. A simpler approach

resembling analysis of normal modes in the theory of molecular vibrations was adopted in
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[5, 6, 9]. Goodson adjusted this method for computer coding and derived recursive relations

suitable for calculation of any order of 1/D-expansion, firstly for the ground state of helium

[9], and later for excited S-states [7]. He found that the series is factorially divergent, and

that Pade approximants could accurately sum the series [8]. A similar approach was used

to calculate higher orders of 1/D-expansion for two-electron atoms [16] and for different

three-body models [17].

Here, we systematically review and re-derive the results published in the paper [7]. It

should be noted that “moment method” [18, 19] of calculation of terms of 1/D-expansion

used in this paper and in the earlier paper [9] was substituted in later publications [8, 10] by a

more efficient “matrix method” developed by Dunn [14], which has an additional advantage

of being equally useful both for the ground and excited states. “Matrix method” differ

from “moment method” in choice of auxiliary parameters entering recurrence relations. In

“moment method”, the relations are derived for expectation values of powers of coordinate

operators, while in “matrix method” they are derived for components of the wave function

in the harmonic oscillator basis set. “Matrix method” is based on applying Green’s function

for calculating successive orders of perturbation theory. It was used for similar problems in

[16, 17]. Here, we focus on the “matrix method” described in a later paper [14], dropping

the “moment method” as it may be now only of historical interest.

First, we consider the large-D limit for S-states of a hydrogen atom and compare conver-

gence of the series for ground vs. excited states. Then, we describe the method of calculation

and consider numerical results for the ground and excited stated of helium atom. We analyze

several factors affecting convergence and discuss results of Pade-summation and divergence

of the asymptotic series in 1/D.

II. GROUND AND EXCITED STATES OF A HYDROGEN ATOM IN

LARGE-DIMENSIONAL LIMIT

Energy of S-state of a hydrogen atom is given by generalization of Rydberg formula [20],

E = − 2

(D − 1 + 2nr)2
, (1)
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where nr is a number of nodes of the radial wave function, which is also known as “radial

quantum number”.

For the ground state, nr = 0, and the 1/D-expansion is

E = − 2

(D − 1)2
= 2D−2(1 +

2

D
+

3

D2
+ . . .), (2)

The series (2) has radius of convergence 1. For excited states,

E = − 2

(D − 1 + 2nr)2
= 2D−2

∞∑
k=0

(2nr − 1)k
(−1)k(k + 1)

Dk
, (3)

and the radius of convergence is 1/(2nr − 1). Thus, the series could be summed for the

ground and the first excited state for D = 3, but it diverges for higher excited states. Since

the functional form of the energy is a rational function of 1/D, the series could be summed

for any excited state using Pade approximants [m/n] with n ≥ 2, where Pade approximant

[m/n] is defined as a ratio of two polynomials of degrees m and n that equals to the function

to be approximated up to the order m+ n in 1/D.

III. SCHRÖDINGER EQUATION FOR D-DIMENSIONAL TWO-ELECTRON

ATOMS

D-dimensional generalization of Schrödinger equation for helium-like atoms reads(
−∇2

1

2
− ∇2

2

2
− Z

r1

− Z

r2

+
1

r12

− E
)

Ψ(r1, r2) = 0, (4)

where r1, r2 are vectors in D-dimensional space, ∇1,∇2 are D-dimensional Laplacians,

r1 = |r1|, r2 = |r2|, r12 = |r1 − r2|. In equation (4), Ψ is the wavefunction, which is a

function of 2D components of vectors r1, r2, E is energy, Z is nuclear charge. We use

atomic units where electron mass, charge, and Plank’s constants are equal to one. A part

of the expression (4) containing second derivatives is called kinetic energy term,

TΨ(r1, r2) =

(
−∇2

1

2
− ∇2

2

2

)
Ψ(r1, r2), (5)
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and a part containing coordinates is called potential term,

VΨ(r1, r2) =

(
−Z
r1

− Z

r2

+
1

r12

)
Ψ(r1, r2). (6)

We use approximation of infinitely heavy nucleus, so that the kinetic term does not contain

derivatives in respect to coordinates of the nucleus. Goodson [7] wrote Schrödinger equation

in different units, where nuclear charge instead of electron charge is one. In his notations,

the potential is −1/r1 − 1/r2 + λ/r12, where λ = 1/Z.

IV. WAVE FUNCTIONS OF S-STATES EXPRESSED IN INTERNAL

COORDINATES

Here, we consider a linear subspace of functions of two D-dimensional vectors that could

be expressed as a function of only three arguments,

Ψ(r1, r2) = ψ(|r1|, |r2|, |r1 − r2|), (7)

It is a generalization of “S-state”, or a state with zero angular momentum, to the space of

D dimensions. If we define a tensor of angular momentum in D-dimensional space as

Lij =
h̄

i

(
r1i

∂

∂r1j

+ r2i
∂

∂r2j

− r1j
∂

∂r1i

− r2j
∂

∂r2i

)
, (8)

then LijΨ = 0 for any i and j.

Let us rewrite the Schrödinger equation in three internal coordinates,

r1 = |r1|, r2 = |r2|, r12 = |r1 − r2|. (9)

Here, we use the approach described earlier in notes about Loeser’s papers. Express-

ing Laplacian through derivatives in respect to inter-particle distances according to equa-
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tion (??), we obtain

T = −1

2

(
∇2

1 + ∇2
2

)
= −1

2

(
∂2

∂r2
1

+
∂2

∂r2
2

+ 2
∂2

∂r2
12

+ 2
r2

1 + r2
12 − r2

2

r1r12

∂2

∂r1∂r12

+ 2
r2

2 + r2
12 − r2

1

r2r12

∂2

∂r2∂r12

+
D − 1

r1

∂

∂r1

+
D − 1

r2

∂

∂r2

+ 2
D − 1

r12

∂

∂r12

)
. (10)

The scaling transformation P = S(D−1)/2ψ where

S =
1

4

(
2r2

1r
2
12 + 2r2

12r
2
2 + 2r2

1r
2
2 − r4

1 − r4
2 − r4

12

)1/2
(11)

is the area of a triangle with the sides r1, r2, r12, removes from equation (10) the terms

linear in derivatives. The D-dimensional Schrödinger equation reduces to the form(
−1

2

∂2

∂r2
1

− 1

2

∂2

∂r2
2

− ∂2

∂r2
12

− r2
1 + r2

12 − r2
2

r1r12

∂2

∂r1∂r12

− r2
2 + r2

12 − r2
1

r2r12

∂2

∂r2∂r12

+ Veff(r1, r2, r12)− E)P (r1, r2, r12) = 0, (12)

where

Veff(r1, r2, r12) =
(D − 1)2

32

r2
1 + r2

2

S2(r1, r1, r12)
− 1

r1

− 1

r2

+
λ

r12

. (13)

V. LIMIT OF D →∞

Derivations are similar to those for harmonic oscillator, see previous notes about “two

papers”. First, we make scaling transformation of variables, r1 → r̃1 = D1/2r1, r2 → r̃2 =

D1/2r2, r12 → r̃12 = D1/2r12, and rewrite equation (12) in the form(
− 1

2D2

∂2

∂r̃2
1

− 1

2D2

∂2

∂r̃2
2

− 1

D2

∂2

∂r̃2
12

− 1

D2

r̃2
1 + r̃2

12 − r̃2
2

r̃1r̃12

∂2

∂r̃1∂r̃12

− 1

D2

r̃2
2 + r̃2

12 − r̃2
1

r̃2r̃12

∂2

∂r̃2∂r̃12

+ U(r̃1, r̃2, r̃12)− Ẽ
)
P̃ (r̃1, r̃2, r̃12) = 0, (14)

where

U(r̃1, r̃2, r̃12) =
1

32

(
1− 1

D

)2
r̃2

1 + r̃2
2

S2(r̃1, r̃1, r̃12)
− 1

r̃1

− 1

r̃2

+
λ

r̃12

. (15)
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We expand the potential U in powers of 1/D,

U = U0 +
1

D
U1 +

1

D2
U2, (16)

where

U0(r̃1, r̃2, r̃12) =
1

32

r̃2
1 + r̃2

2

S2(r̃1, r̃1, r̃12)
− 1

r̃1

− 1

r̃2

+
λ

r̃12

, (17)

U1(r̃1, r̃2, r̃12) =
1

16

r̃2
1 + r̃2

2

S2(r̃1, r̃1, r̃12)
, (18)

U2(r̃1, r̃2, r̃12) =
3

32

r̃2
1 + r̃2

2

S2(r̃1, r̃1, r̃12)
. (19)

It will be proven in the next section that the large D limit of energy of some quantum-

mechanical state is expressed through a minimum of the potential U0,

E ∼ 1

D2
Ẽ0, Ẽ0 ≡ min

r̃1,r̃1,r̃12
U0(r̃1, r̃1, r̃12). (20)

Here, we use non-rigorous “heuristic” argument to derive equation (20) for the ground state.

In equation (14), the parameter 1/D formally plays the role of Planck’s constant, because

its square stands as a factor in front of second derivatives. It means that the limit D →∞

corresponds to the classical mechanics in the potential U0 = limD→∞ U . In this limit, the

ground state turns into a classical state with the lowest energy, which is a static state of a

particle resting at the minimum of the potential U0.

Minimum of the potential U0 could be either symmetric, r1 = r2 or asymmetric, r1 6= r2.

For a neutral atom of helium and all positive ions Z ≥ 2 only the former a symmetric

minimum is possible, see Appendix,

r
(0)
1 = r

(0)
2 =

1

4(1 + c)2
, (21)

r
(0)
12 =

√
1− c

2
√

2(1 + c)2
, (22)

where

c = −(λ/8)2 − (λ/8)(2 + λ2/64)1/2. (23)

For the case of helium atom the minimal configuration is an isosceles triangle sgown on



7

Fig. 1. Finding of an asymmetric minimum reduces to solving of a seventh degree polynomial

°30.95

FIG. 1. Configuration minimizing the effective potential for helium atom. The
electrons are located in vertexes of an isosceles triangle. This fixed-electron

configuration is reminiscent of pre-quantum models of Lewis and Langmuire.

equation, see Appendix. These minima exist only in a narrow range of 0.809585 < λ < 1

corresponding to hypothetical fractional nuclear charge 1 < Z < 1.2352. In general, there are

four possible cases (see Fig 2): (1) minima are asymmetric, (2) minima are asymmetric, with

existence of a local symmetric secondary minimum (above the global asymmetric minimum),

(3) minimum is symmetric, with two flanking secondary asymmetric minima, (4) a single

symmetric minimum, with existance of two asymmetric complex stationary points. A neutral

helium atom (Z = 2) and all positive ions (Z ≥ 3) belong to the case (4), with only one

symmetric minimum.

VI. FIRST-ORDER CORRECTIONS, OR “LANGMUIR VIBRATIONS”

Here, we consider the problem by approximating the potential by a parabola and solving

the quantum equation for a harmonic oscillator. It should be noted that although it corrects

the classical limit, equation (20), by first-order term ∼ 1/D, this approximation is in fact the

zero-order quantum approximation in a subsequent anharmonic perturbation theory rather

than “correction” to the classical limit. It is a consequence of the fact that the classical limit

is essentially different from the quantum problem, so it cannot be considered by itself as

zero-order approximation for developing the series in 1/D. Indeed, in the classical limit the

wave function squared tends to an infinitely sharp distribution (delta-function) concentrated

around the minimum of the potential which is qualitatively different from smooth wave

functions for finite values of D. Physicist refer to this case as “singular” limit.
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Atom with variable nuclear charge.
Instability of molecules and a negative ion H- at large D

Vmin is the minimum of Veff for 
the given value of the 

parameter of asymmetry, 

Curves for different values of 
Z are shifted along vertical 

axis for easier plotting.
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FIG. 2. Shape of the effective potential for helium-like ions in the direction of soft
antisymmetric mode. Vmin is the minimum of Veff for the given value of the parameter

of asymmetry, r1−r2
r1+r2

. The charge Z is related to the Coulomb force parameter λ as
λ = 1/Z. Curves for different values of Z are shifted along the vertical axis for easier

plotting.

Let us introduce new variables (x, y, z) instead of old variables (r̃1, r̃1, r̃12),

r̃1 = r̃
(0)
1 +D−1/2x, (24)

r̃2 = r̃
(0)
2 +D−1/2y, (25)

r̃12 = r̃
(0)
12 +D−1/2z. (26)

Then, equation (14) could be rewritten in new variables as(
−1

2

∂2

∂x2
− 1

2

∂2

∂y2
− 1

2

∂2

∂z2
− r̃2

1 + r̃2
12 − r̃2

2

r̃1r̃12

∂2

∂x∂z
− 1

D2

r̃2
2 + r̃2

12 − r̃2
1

r̃2r̃12

∂2

∂y∂z

+ v(x, y, z)− ε)Y (x, y, z) = 0, (27)

where Y (x, y, z) = P̃ (r̃
(0)
1 + D−1/2x, r̃

(0)
2 + D−1/2y, r̃

(0)
12 + D−1/2z) is a scaled wavefunction

and ε = DẼ is the scaled energy. The potential in equation (27) is ... ————————-

... (will be added more sections)

Excited S-states of helium could be treated in the same way as the ground state, but using

non-zero quantum numbers in the harmonic vibrational modes [7, 9]. Calculations require

only finite number of arithmetic operations for each order in 1/D, but they require large

amount of computer resources, since memory grows ∼ k4 and processor time ∼ k8, where
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k is the order in 1/D. In addition, calculations are numerically unstable, so that precision

decreases approximately ten times as k increases by one. Goodson et al. [12] devised a more

economical “matrix method” which is less demanding in processor time, and calculated 30

terms of the series for the ground state. This method was later used for lowest excited states

[7], where it allows to calculate more than 20 terms. Basically the same algorithm on modern

computers with multiple-precision arithmetic allows to calculate up to 50 terms. Table VI

lists coefficients of 1/D expansion E = D−2(E0 + E1/D + E2/D
2 + . . .) for the ground and

two lowest excited states of helium. Unlike coefficients with decreasing number of significant

figures given in [7, 12], here all coefficients are given with the same number of significant

figures. Coefficients were obtained with accuracy of at least 100 significant figures, because

we used multiple-precision arithmetic with an excessive accuracy of 200 figures.

Cauchy root test (|Ek/E0|1/k) shows [7] that |Ek/E0|1/k → ∞ as k → ∞ which means

that radius of convergence of the series is zero. Numerical study of Borel transformation of

the series [12] gives the behavior of the coefficients at large order as

Ek ∼ kβRe(cak)k!, (28)

where c and a are some complex-valued constants, and β is a real constant. For the ground

state, a−1 = −0.32362 + 0.10054i, β = −1/2. and for 1s 2s 3S excited state a−1 = −0.308 +

0.108i, although some theoretical studies indicate that a should be the same for all states.

For 1s 2s 1S the series is strongly divergent because of so-called effect of Fermi resonance...

[1] J. G. Loeser, J. Chem. Phys. 86, 5635 (1987).

[2] L. D. Mlodinow and N. Papanicolaou, Ann. Phys. 131, 1 (1981).

[3] E. Witten, Phys. Today, July, 38 (1980).

[4] L. D. Mlodinow. The large N expansion in quantum mechanics. Dissertation, Berkeley, 1981.

[5] P. du T. van der Merwe, J. Chem. Phys. 81, 5976 (1984).

[6] A. A. Belov and Yu. E. Lozovik, Phys. Lett. A 142, 389 (1989).

[7] D. Z. Goodson and D. K. Watson, Phys. Rev. A 48, 2668 (1993).

[8] D. Z. Goodson, in Dimensional Scaling in Chemical Physics, p. 359 (1993).



10

TABLE I. Coefficients of the 1/D-expansion of the energy of the ground 1s21S and 1s 2s3S,
1s 2s1S excited states of helium. Energies are divided by Z2 = 4 for easier comparison with

tables in [7, 12].
1s2 1S 1s 2s 3S 1s 2s 1S

k Ek Ek Ek
0 −0.273 776 914 112 772 · 101 −0.273 776 914 112 772 · 101 −0.273 776 914 112 772 · 101

1 −0.605 759 194 836 365 · 101 −0.250 856 408 180 831 · 101 −0.631 212 358 902 951 · 100

2 −0.886 218 378 983 332 · 101 −0.803 530 933 369 665 · 101 −0.415 806 497 802 236 · 102

3 −0.139 006 372 818 208 · 102 −0.217 406 297 785 584 · 101 0.924 638 517 825 852 · 103

4 −0.543 672 043 287 805 · 101 −0.733 985 737 832 461 · 102 −0.396 416 185 364 982 · 105

5 −0.827 394 676 588 397 · 102 0.918 913 732 804 691 · 103 0.213 025 950 728 081 · 107

6 0.131 269 893 398 517 · 103 −0.152 292 462 835 742 · 105 −0.129 651 001 399 477 · 109

7 0.101 260 076 492 362 · 105 0.275 970 825 487 888 · 106 0.849 480 470 121 711 · 1010

8 −0.433 338 867 474 867 · 106 −0.543 499 063 189 321 · 107 −0.584 311 304 054 813 · 1012

9 0.142 144 642 644 793 · 108 0.112 004 529 756 752 · 109 0.416 050 786 221 958 · 1014

10 −0.443 814 218 443 243 · 109 −0.227 691 999 243 618 · 1010 −0.304 019 175 709 726 · 1016

11 0.138 213 439 984 308 · 1011 0.396 766 902 942 189 · 1011 0.226 682 537 645 016 · 1018

12 −0.433 011 023 588 743 · 1012 −0.228 448 804 542 042 · 1012 −0.171 773 965 895 695 · 1020

13 0.135 235 142 263 286 · 1014 −0.323 649 810 503 408 · 1014 0.131 902 342 310 846 · 1022

14 −0.409 599 384 963 817 · 1015 0.277 018 578 410 563 · 1016 −0.102 412 397 582 321 · 1024

15 0.112 287 235 940 352 · 1017 −0.170 660 303 123 796 · 1018 0.802 647 117 345 928 · 1025

16 −0.216 308 554 547 690 · 1018 0.948 351 712 932 780 · 1019 −0.634 150 205 854 848 · 1027

17 −0.322 430 439 975 667 · 1019 −0.502 447 417 404 554 · 1021 0.504 536 825 841 155 · 1029

18 0.788 061 799 083 826 · 1021 0.257 694 378 021 768 · 1023 −0.403 878 561 296 888 · 1031

19 −0.699 028 626 681 805 · 1023 −0.127 445 428 579 623 · 1025 0.325 054 216 150 535 · 1033

20 0.507 872 349 910 954 · 1025 0.593 683 321 341 119 · 1026 −0.262 874 891 025 081 · 1035

21 −0.339 035 331 840 671 · 1027 −0.243 809 976 442 846 · 1028 0.213 507 202 365 113 · 1037

22 0.215 074 794 023 052 · 1029 0.684 491 805 883 434 · 1029 −0.174 084 626 217 402 · 1039

23 −0.130 512 242 138 343 · 1031 0.154 206 214 617 566 · 1031 0.142 440 495 440 181 · 1041

24 0.748 745 440 244 603 · 1032 −0.516 869 644 621 971 · 1033 −0.116 921 395 846 615 · 1043

25 −0.390 344 292 918 235 · 1034 0.635 198 931 932 558 · 1035 0.962 547 378 366 071 · 1044

26 0.163 196 213 464 029 · 1036 −0.631 280 989 395 567 · 1037 −0.794 534 740 139 634 · 1046

27 −0.218 372 826 550 928 · 1037 0.569 077 082 811 314 · 1039 0.657 466 887 593 857 · 1048

28 −0.636 894 003 577 323 · 1039 −0.481 648 551 452 523 · 1041 −0.545 284 648 793 546 · 1050

29 0.112 773 820 419 316 · 1042 0.385 620 740 525 774 · 1043 0.453 198 293 824 880 · 1052

30 −0.137 820 805 524 465 · 1044 −0.288 913 059 529 396 · 1045 −0.377 401 692 387 661 · 1054

[9] D. Z. Goodson and D. R. Herschbach, Phys. Rev. Lett. 58, 1628 (1987).
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