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I. INTRODUCTION

Here, we consider a system of two particles bound in a central field. An example is a

helium atom consisting of a heavy nucleus and two electrons. We generalize the problem to

Cartesian space of D dimensions.

In D-dimensional Schrödinger equation, the number of arguments of the wave function

grows as 2D. For S-wave states the Schrödinger equation could be re-written in terms

of only three “internal coordinates”, which are absolute values of vectors r1, r2, and the

angle θ between them (instead of θ, one could alternatively use the inter-electron distance

r12 = |r1 − r2|). The dimensionality D enters as a parameter in the effective potential in

this differential equation. This fact allows one to develop Rayleigh-Schrödinger perturbation
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theory for small values of the parameter 1/D. For the case of two-electron atoms, it leads

to recurrence relations for coefficients of the series in 1/D [8–10].

In two extensive papers [5, 6] (more than 70 pages in total), Dunn and Watson factored

out rotational degrees of freedom from internal degrees in the wave function of N particles

bound in a central field. Their method is based on D-dimensional generalization of three-

dimensional Schwartz expansion [14] (see also a simplified heuristic account of this work in

[3]). In [4], Dunn and Watson showed that for the states with non-zero angular momentum

of two-electron atoms, this approach reduces to solving of coupled differential equations

in internal coordinates. In two subsequent papers [1, 7], Dunn and co-authors solved the

resulting coupled equation in the large-D limit by developing a perturbation series in powers

of 1/D.

Dunn and Watson derived the coupled differential equations in internal coordinates using

generalization of Wigner’s D-functions and sophisticated group-theoretical considerations.

In current notes, we derive the same equations using a simplified approach based on purely

algebraic manipulations.

For instructive purposes, we start from derivation of radial Schrödinger equation for one

particle moving in a central field. Then, we generalize this approach to include a non-trivial

case of two particles bound in a central field potential. Using symmetry of the wavefunction,

we arrive finally to equations equivalent to those given by Dunn and Watson in [1].

II. ONE PARTICLE IN A CENTRAL FIELD

Schrödinger equation for a particle in a central potential V (r) reads

−∇2

2
Ψ(r) + V (r)Ψ(r) = EΨ(r), (1)

where Ψ is the wavefunction, E is the energy, and we use atomic units, where the mass of

the particle and Planck’s constant equal to one. We assume that r = (r(1), r(2), . . . r(D)) is

a vector in D-dimensional Cartesian space, and r = |r|.

A. S-states

Let us consider a subspace of wavefunctions that have the following functional form

Ψ(r) = ψ(r), (2)
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i.e. the functions of only one variable r.

The first derivative of (2) in respect to the i-th component of the radius-vector is

∂

∂r(i)
Ψ(r) =

r(i)

r
ψ′(r), (3)

and the second derivative is

∂2

∂r(i)2
Ψ(r) =

1

r
ψ′(r)− r(i)2

r3
ψ′(r) +

r(i)2

r2
ψ′′(r). (4)

Using equation (4), one could calculate the Laplacian as

∇2Ψ(r) =
D∑
i=1

∂2

∂r(i)2
Ψ(r) = ψ′′(r) +

D − 1

r
ψ′(r). (5)

Using equation (5), the original equation (1) in D coordinates reduces to a “radial” equation

in only one variable r,

[T0 + V (r)− E]ψ(r) = 0, (6)

where T0 is the following differential operator

T0 = −1

2

d2

dr2
− D − 1

2r

d

dr
. (7)

Angular momentum could be generalized to D-dimensional space as a tensor whose com-

ponents are operators

Li,j = −i
(
r(i) ∂

∂r(j)
− r(j) ∂

∂r(i)

)
. (8)

Since for the wavefunction of the form given by equation (2)

Li,jΨ(r) = 0, (9)

it could be considered as a generalization of S-state to D dimensions. Thus, we derive here

radial Schrödinger equation for S-states by guessing their functional form.

B. Non-zero angular momentum states

Here, we assume that D ≥ 2 and l is some non-negative integer. Let us consider a

subspace of wavefunctions of the following functional form

Ψ(r) = (x+ iy)l ψ(r), x ≡ r(1), y ≡ r(2). (10)
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Since the case of l = 0 simply reduces to S-state wavefunctions given by equation (2), we

assume henceforward that l > 0.

Laplacian of the function (10) is

∇2Ψ(r) =
[
∇2(x+ iy)l

]
ψ(r) + 2

(
∇(x+ iy)l,∇ψ(r)

)
+ (x+ iy)l ∇2ψ(r). (11)

The first term in equation (11) is zero because ∇2(x+ iy)l. The second term is

2
(
∇(x+ iy)l,∇ψ(r)

)
= 2

(
∂

∂x
(x+ iy)l

)(
∂

∂x
ψ(r)

)
+2

(
∂

∂y
(x+ iy)l

)(
∂

∂y
ψ(r)

)
= 2lΨ(r),

(12)

and the third term could be calculated in the same way as in Subsection II A,

(x+ iy)l ∇2ψ(r) = (x+ iy)l
(
ψ′′(r) +

D − 1

r
ψ′(r)

)
, (13)

Using equations (12) and (13) and factoring out the term (x + iy)l, we reduce the original

Schrödinger equation (1) to the “radial” equation

(Tl + V (r)− E)ψ(r) = 0, (14)

where Tl is the differential operator

Tl = T0 −
l

r

d

dr
= −1

2

d2

dr2
− 2l +D − 1

2r

d

dr
, (15)

and T0 is given by equation (7).

Now, let us calculate actions of different components of the tensor of angular momentum

(8) on the wavefunction of the functional form given by equation (10). If i = 1 and j = 2,

then

L1,2Ψ(r) = −ix
[
il(x+ iy)l−1 ψ(r) + (x+ iy)l

y

r
ψ′(r)

]
+ iy

[
l(x+ iy)l−1 ψ(r) + (x+ iy)l

x

r
ψ′(r)

]
. (16)

In equation (16), second and fourth terms cancel, and we have

L1,2Ψ(r) = l(x+ iy)(x+ iy)l−1 = lΨ(r). (17)

If j > 2, then

L1,jΨ(r) = ilr(j)(x+ iy)l−1 ψ(r), L2,jΨ(r) = −lr(j)(x+ iy)l−1 ψ(r). (18)
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Finally, if i > 2 and j > 2, then

Li,jΨ(r) = 0. (19)

We generalize rotationally-invariant square of angular momentum to D-dimensional space

as

L2 =
∑
i<j

L2
i,j. (20)

Calculating action of operators L2
i,j on Ψ(r), we find

L2
1,2Ψ(r) = l2 Ψ(r), (21a)

L2
1,jΨ(r) = lx(x+ iy)l−1ψ(r)− l(l − 1)r(j)2(x+ iy)l−2ψ(r), j > 2 (21b)

L2
j,2Ψ(r) = l(l − 1)r(j)2(x+ iy)l−2ψ(r) + ily(x+ iy)l−1ψ(r), j > 2 (21c)

L2
i,jΨ(r) = 0, i > 2, j > 2. (21d)

Using equations (21b) and (21c) we find

(L2
1,j + L2

j,2)Ψ(r) = lΨ(r), j > 2. (22)

Using equations (21a), (22), and (21d) we find

L2Ψ(r) = L2
1,2Ψ(r)+

D∑
j=3

(
L2

1,jΨ(r) + L2
2,jΨ(r)

)
+

∑
3≤i<j≤D

L2
i,jΨ(r) = l(l+D−2)Ψ(r). (23)

Equation (23) means that the function Ψ(r) is eigenfunction of square of angular momentum

with non-zero eigenvalue. Thus, equation (14) represents radial equation for wavefunctions

with a non-zero angular momentum.

Current approach is based on guessing right functional form of the wavefunction of non-

zero angular momentum. Here, we chose only one particular functional form corresponding

to one of many possible spacial orientations of the angular momentum. Determining and

counting all independent functional forms is possible through l-th degree homogeneous har-

monic polynomials (i.e. polynomials satisfying the Laplacian differential equation), see for

example a textbook of Kramers[13]. Another possible eigenfunctions of L2 include for exam-

ple functions of the form
(∑D

i=1 cir
(i)
)l
ψ(r) where c1, c2, . . . , cD are any constants satisfying

equation
∑D

i=1 c
2
i = 0. Kramers found the number of linearly independent functional forms

in three-dimensional space to be 2l + 1 by firstly counting the number of coefficients in the

l-th degree homogeneous polynomial, 1
2
(l + 1)(l + 2), and then subtracting the number of
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constraints, 1
2
l(l − 1). By adjusting Kramer’s argument to D-dimensional space, one could

easily estimate the number of linearly independent functional forms in general case of D

dimensions as

(2l +D − 2)(l +D − 3)!

(D − 2)! l!
=

(l +D − 1)!

(D − 1)! l!
− (l +D − 3)!

(D − 1)! (l − 2)!
. (24)

Particularly for D = 2, there are two independent functions (x ± iy)l ψ(r) which obviously

correspond to two possible eigenvalues ±l of L1,2. It should be noted that the radial equation

is the same for all functions with the given eigenvalue of L2, but the orientations of the

angular momentum in space are different.

III. TWO PARTICLES IN A CENTRAL FIELD

Schrödinger equation for two particles in a central field reads[
−∇2

1

2
− ∇2

2

2
+ V (r1, r2, r12)− E

]
Ψ(r1, r2) = 0, (25)

where Ψ is the wavefunction, E is the energy, V is the potential of interaction of the particles

with the central field plus the potential of interaction between the particles, and we use

units, where the mass of each particle and Planck’s constant equal to one. We assume that

r1 = |r1|, r2 = |r2|, and r12 = |r1 − r2|. Everywhere in this section we use the same

notations as those for the case of one particle in Section II, but now the potential and the

wavefunction have larger number of arguments.

A. S-states

Let us consider a subspace of wavefunctions that have the following functional form

Ψ(r1, r2) = ψ(r1, r2, r12), (26)

i.e. the functions of only three variables r1, r2, r12. The following derivations are completely

analogous to those in Subsection II A for the case of one particle.

First derivatives of (26) in respect to the i-th component of r1 and r2 are

∂

∂r
(i)
1

Ψ(r1, r2) =
r
(i)
1

r1
ψ′r1(r1, r2, r12) +

r
(i)
1 − r

(i)
2

r12

ψ′r12(r1, r2, r12),

∂

∂r
(i)
2

Ψ(r1, r2) =
r
(i)
2

r2
ψ′r2(r1, r2, r12) +

r
(i)
2 − r

(i)
1

r12

ψ′r12(r1, r2, r12),

(27)
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and second derivatives are

∂2

∂r
(i)
1

2 Ψ(r1, r2) =
1

r1
ψ′r1(r1, r2, r12)−

r
(i)
1

2

r3
1

ψ′r1(r1, r2, r12) +
r
(i)
1

2

r2
1

ψ′′r1,r1(r1, r2, r12)

+
1

r12

ψ′r12(r1, r2, r12)−
(r

(i)
1 − r

(i)
2 )

2

r3
12

ψ′r12(r1, r2, r12)

+
(r

(i)
1 − r

(i)
2 )

2

r2
12

ψ′′r12,r12(r1, r2, r12) + 2
r
(i)
1 (r

(i)
1 − r

(i)
2 )

r1r12

ψ′′r1,r12(r1, r2, r12),

(28a)

∂2

∂r
(i)
2

2 Ψ(r1, r2) =
1

r2
ψ′r2(r1, r2, r12)−

r
(i)
2

2

r3
2

ψ′r2(r1, r2, r12) +
r
(i)
2

2

r2
2

ψ′′r2,r2(r1, r2, r12)

+
1

r12

ψ′r12(r1, r2, r12)−
(r

(i)
2 − r

(i)
1 )

2

r3
12

ψ′r12(r1, r2, r12)

+
(r

(i)
2 − r

(i)
1 )

2

r2
12

ψ′′r12,r12(r1, r2, r12) + 2
r
(i)
2 (r

(i)
2 − r

(i)
1 )

r2r12

ψ′′r2,r12(r1, r2, r12).

(28b)

Using equations (28a) and (28b), one could calculate

(
∇2

1 + ∇2
2

)
Ψ(r1, r2) =

D∑
i=1

(
∂2

∂r
(i)
1

2 +
∂2

∂r
(i)
2

2

)
Ψ(r1, r2)

= ψ′′r1,r1(r1, r2, r12) + ψ′′r2,r2(r1, r2, r12) + 2ψ′′r12,r12(r1, r2, r12)

+
r2
12 + r2

1 − r2
2

r1r12

ψ′′r1,r12(r1, r2, r12) +
r2
12 + r2

2 − r2
1

r2r12

ψ′′r2,r12(r1, r2, r12)

(29)

Using equation (29), equation (25) reduces to an equation in “internal” coordinates r1, r2, r12,

[T + V (r1, r2, r12)− E]ψ(r1, r2, r12) = 0, (30)

where T is the differential operator

T = −1

2

(
∂2

∂r2
1

+
∂2

∂r2
2

+ 2
∂2

∂r2
12

+ 2
r2
1 + r2

12 − r2
2

r1r12

∂2

∂r1∂r12

+ 2
r2
2 + r2

12 − r2
1

r2r12

∂2

∂r2∂r12

+
D − 1

r1

∂

∂r1
+
D − 1

r2

∂

∂r2
+ 2

D − 1

r12

∂

∂r12

)
.

(31)

(i, j)-component of the operator of total angular momentum is

Li,j = −i

(
r
(i)
1

∂

∂r
(j)
1

− r(j)
1

∂

∂r
(i)
1

+ r
(i)
2

∂

∂r
(j)
2

− r(j)
2

∂

∂r
(i)
2

)
. (32)
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Since for the wavefunction of the form given by equation (26)

Li,jΨ(r1, r2) = 0, (33)

it describes S-state.

B. Non-zero angular momentum states

Assuming that D ≥ 2 and l > 0 is an integer, we consider a subspace of wavefunctions

of the following functional form

Ψl(r1, r2) =
∑

(x1 + iy1)
l1 (x2 + iy2)

l2 ψ(l1,l2)(r1, r2, r12), (34)

where summation is performed for all possible non-negative integer numbers l1, l2 satisfying

equation

l1 + l2 = l (35)

and

x1 ≡ r
(1)
1 , y1 ≡ r

(2)
1 , x2 ≡ r

(1)
2 , y2 ≡ r

(2)
2 . (36)

Taking into account that ∇1(x1 + iy1)
l1 = 0, ∇2(x2 + iy2)

l2 = 0 and that −1/2(∇2
1 +

∇2
2)ψ

(l1,l2)(r1, r2, r12) = Tψ(l1,l2)(r1, r2, r12) where T is the differential operator given by

equation (31), we could calculate the kinetic energy term as(
−∇2

1

2
− ∇2

2

2

)
Ψ(r1, r2) =

∑{
(x1 + iy1)

l1 (x2 + iy2)
l2 Tψ(l1,l2)(r1, r2, r12)

− (x2 + iy2)
l2
([

∇1(x1 + iy1)
l1
]
,∇1ψ

(l1,l2)(r1, r2, r12)
)

− (x1 + iy1)
l1
([

∇2(x2 + iy2)
l2
]
,∇2ψ

(l1,l2)(r1, r2, r12)
)} (37)
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The second term in the sum in r.h.s of equation (37) is

−(x2 + iy2)
l2
([

∇1(x1 + iy1)
l1
]
,∇1ψ

(l1,l2)(r1, r2, r12)
)

=

− (x2 + iy2)
l2

[(
∂

∂x1

(x1 + iy1)
l1

)(
∂

∂x1

ψ(l1,l2)(r1, r2, r12)

)
+

(
∂

∂y1

(x1 + iy1)
l1

)(
∂

∂y1

ψ(l1,l2)(r1, r2, r12)

)]
=

− (x2 + iy2)
l2 l1 (x1 + iy1)

l1−1

[(
x1

r1
+ i

y1

r1

)
ψ′

(l1,l2)

r1
(r1, r2, r12)

+

(
x1 − x2

r12

+ i
y1 − y2

r12

)
ψ′

(l1,l2)

r12
(r1, r2, r12)

]
=

− l1 (x1 + iy1)
l1 (x2 + iy2)

l2

[
1

r1
ψ′

(l1,l2)

r1
(r1, r2, r12) +

1

r12

ψ′
(l1,l2)

r12
(r1, r2, r12)

]
+ l1 (x1 + iy1)

l1−1 (x2 + iy2)
l2+1

[
1

r12

ψ′
(l1,l2)

r12
(r1, r2, r12)

]
,

(38)

where we used formulas for derivatives given by equation (27).

The third term in the sum in r.h.s of equation (37) could be calculated in the same way

as in equation (38),

−(x1 + iy1)
l1
([

∇2(x2 + iy2)
l2
]
,∇2ψ

(l1,l2)(r1, r2, r12)
)

=

− l2 (x1 + iy1)
l1 (x2 + iy2)

l2

[
1

r1
ψ′

(l1,l2)

r2
(r1, r2, r12) +

1

r12

ψ′
(l1,l2)

r12
(r1, r2, r12)

]
+ l2 (x1 + iy1)

l1+1 (x2 + iy2)
l2−1

[
1

r12

ψ′
(l1,l2)

r12
(r1, r2, r12)

]
.

(39)

Finally, combining equations (37), (38), (39) we obtain(
−∇2

1

2
−∇2

2

2

)
Ψ(r1, r2)

=
∑{

(x1 + iy1)
l1 (x2 + iy2)

l2

(
T − l1

r1

∂

∂r1
− l2
r2

∂

∂r2
− l

r12

∂

∂r12

)
ψ(l1,l2)(r1, r2, r12)

−
[
l1(x1 + iy1)

l1−1(x2 + iy2)
l2+1 + l2(x1 + iy1)

l1+1(x2 + iy2)
l2−1
] 1

r12

∂

∂r12

ψ(l1,l2)(r1, r2, r12)

}
.

(40)

Let us define l + 1-component vector ψ as

ψ(r1, r2, r12) =
(
ψ(0,l)(r1, r2, r12), ψ

(1,l−1)(r1, r2, r12), . . . , ψ
(l,0)(r1, r2, r12)

)
(41)
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and (l + 1)× (l + 1) matrices I, A+, A−, B+, B− as

Il1,l2 = δl1,l2 ,

A+
l1,l2

= l1 δl1,l2 ,

A−l1,l2 = l2 δl1,l2 ,

B+
l1,l2

= l1 δl1−1,l2 ,

B−l1,l2 = l2 δl1,l2−1.

(42)

Then, taking into account equation (40) we could see that the Schrödinger equation (25) is

satisfied if the following system of l+ 1 differential equations written in a vector form holds,[(
T − l

r12

∂

∂r12

+ V (r1, r2, r12)− E
)

I− 1

r1

∂

∂r1
A+ − 1

r2

∂

∂r2
A− − 1

r12

∂

∂r12

(
B+ + B−

)]
ψ = 0.

(43)

C. Inversion symmetry

Since the potential does not change under the transformation of inversion, r1 →

−r1, r2 → −r2, the wavefunction should have certain parity π = ±1, i.e. either it does not

change under inversion or it is multiplied by (−1). For the particular chosen functional form

(34), the parity is determined through l as π = (−1)l. It is easy to see that equation (43)

is identical to the formula (4) from the paper [1] with their x = L equal to our l and their

matrices Lx and Sx related to our matrices (42) as 1
2
(LIx ± Lx) = A±, Sx = B+ + B−. There

should be taken into account two misprints in their formula (4), +Lx → −Lx in 5-th line and

2r12 → r12 in a denominator of the last line (the misprints could be spotted by comparison

of the formula (4) with a similar formula (24) from their earlier paper [4]).

Since the function (34) for a given l has only one possible parity, this functional form does

not span all possible symmetries. In one of the earliest papers about dimensionality dilation

and its use in atomic physics, Herrick and Stillinger [12] proved that some of P-states of

helium atom have the same energy as S-states, but in a non-physical 5-dimensional space.

There, he used the following functional form for the wave function,

Ψ(r1, r2) = (x1y2 − x2y1)ψ(r1, r1, r12), (44)

where xi and yi are the first and the second coordinates of i-th electron (i = 1, 2). This fact
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provides a hint to try a more general functional form

Ψ(r1, r2) = (x1y2 − x2y1)
∑

(x1 + iy1)
l1 (x2 + iy2)

l2 ψ(l1,l2)(r1, r2, r12), (45)

where summation is performed for all possible non-negative integer numbers l1, l2 satisfying

equation

l1 + l2 = l − 1 (46)

for a given positive integer l. However, this naive attempt fails. Let us consider 2-dimensional

space. Then, there is only one component of angular momentum L1,2 whose eigenvalues

are integer numbers ±l. Since the operation of inversion in a plane could be expressed

through L1,2 as exp (iπL1,2), the function of angular momentum l has always a certain

parity exp (iπl) = (−1)l. Therefore, functions that have an opposite parity (−1)l+1 in two

dimensions simply does not exist!

Duan and co-authors [2] gave a formula for states of two possible parity in three dimen-

sions. This functional form could be equally used in any dimensionality D ≥ 3,

Ψ(r1, r2) = [(x1 + iy1)z2 − (x2 + iy2)z1]
∑

l1+l2=l−1

(x1 + iy1)
l1 (x2 + iy2)

l2 ψ(l1,l2)(r1, r2, r12),

(47)

where zi is the third coordinate of i-th electron. The wavefunction given by equation (47) is

complementary to the wavefunction given by equation (34) in a sense that while the former

has parity −(−1)l, the latter has parity (−1)l. It could be proven by direct calculations that

the differential equations for l functions ψ(l1,l2)(r1, r2, r12) are given by old formula (43) in

which D (in a definition of the operator T ) is replaced by D+2 and l is replaced by l−1. This

formula is identical to the formula (4) from the paper [1] with their x = L− 1 equal to our

l−1. Since equations are the same both for (D, l, π = (−1)l) and for (D+2, l−1, π = −(−1)l)

states, the energies are equal (“interdimensional degeneracies”).

D. Complete set of functions for a given angular momentum in D ≥ 4

As it was stated in [2], wavefunctions given by equations (34) and (47) constitute a

complete set for the given angular momentum in three dimensions. Later, Gu and co-authors

generalized their approach to the space of D dimensions [11]. It appears that there exist

even more general functions of a given angular momentum in the space of dimensionality
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D ≥ 4,

Ψ(r1, r2) = [(x1 + iy1)(z2 + iw2)− (x2 + iy2)(z1 + iw1)]
ν

×
∑

l1+l2=l−ν

(x1 + iy1)
l1 (x2 + iy2)

l2 ψ(l1,l2)(r1, r2, r12), (48)

where wi is the fourth coordinate of i-th electron, and ν is an integer 0 ≤ ν ≤ l. In a

particular case of ν = 0, equation (48) is equivalent to equation (34). In case of ν = 1, it

has a slightly different form from equation (47) (because of presence of coordinates w1 and

w2), but the equation for radial functions ψ(l1,l2)(r1, r2, r12) remain the same (compare with

the same fact for P-functions xψ(r) and (x + iy)ψ(r) in case of one particle). The set of

differential equations for l−ν+1 functions ψ(l1,l2)(r1, r2, r12) are given by old formula (43) in

which D is replaced by D+2ν and l is replaced by l−ν. Thus (D, l, ν) and (D−2, l+1, ν+1)

states have always the same energy yielding the complete spectrum of “interdimensional

degeneracies” [11]. This fact effectively reduces any state in even dimensionality larger than

4 to some l 6= 0 state in four dimensions and any state in odd dimensionality larger than 4

to some l 6= 0 state in D = 5.
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