ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "ar-mpn_Rfci"

System ar-mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-526.8009724-526.80097
2-0.1543265-526.95530
3-0.0127019-526.96800
4-0.0016373-526.96964
5-0.0003016-526.96994
6-0.0001628-526.97010
7-0.0000103-526.97011
8-0.0000133-526.97013
95.e-7-526.97013
10-2.2e-6-526.97013
115.e-7-526.97013
12-5.e-7-526.97013
132.e-7-526.97013
14-1.5e-7-526.97013
159.e-8-526.97013
16-6.e-8-526.97013
174.e-8-526.97013
18-3.e-8-526.97013
192.e-8-526.97013
201.e-8-526.97013
210.e-8-526.97013
220.e-8-526.97013
230.e-8-526.97013
240.e-8-526.97013
250.e-8-526.97013
260.e-9-526.97013
270.e-9-526.97013
280.e-9-526.97013
290.e-9-526.97013
300.e-9-526.97013
310.e-9-526.97013
320.e-9-526.97013
330.e-9-526.97013
340.e-9-526.97013
350.e-9-526.97013
360.e-9-526.97013
370.e-10-526.97013
380.e-10-526.97013
390.e-10-526.97013
400.e-10-526.97013
410.e-10-526.97013
420.e-10-526.97013
430.e-10-526.97013
440.e-10-526.97013
450.e-10-526.97013
460.e-10-526.97013
470.e-10-526.97013
480.e-10-526.97013
490.e-11-526.97013
500.e-11-526.97013
510.e-11-526.97013
520.e-11-526.97013
530.e-11-526.97013
540.e-11-526.97013
550.e-11-526.97013
560.e-11-526.97013
570.e-11-526.97013
580.e-11-526.97013
590.e-11-526.97013
600.e-11-526.97013
610.e-11-526.97013
620.e-11-526.97013
630.e-12-526.97013
640.e-12-526.97013
650.e-12-526.97013
660.e-12-526.97013
670.e-12-526.97013
680.e-12-526.97013
690.e-12-526.97013
Exact energy-526.97013
Top of Page  Top of the page         Top oftable  Top of this table (ar-mpn_Rfci)     Next Example  Next (bh-mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Top offigure  Top of this figure (ar-mpn_Rfci)     Next Example  Next (bh-mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  1.0098, b = -7.4865 and c =  69.0566
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -526.80 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Top offigure  Top of this figure (ar-mpn_Rfci)     Next Example  Next (bh-mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Top offigure  Top of this figure (ar-mpn_Rfci)     Next Example  Next (bh-mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Top offigure  Top of this figure (ar-mpn_Rfci)     Next Example  Next (bh-mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.