ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "bh-mpn_Rfci"

System bh-mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-25.131366-25.13137
2-0.0786356-25.21000
3-0.0148205-25.22482
4-0.0058594-25.23068
5-0.0025107-25.23319
6-0.0012372-25.23443
7-0.000643-25.23507
8-0.0003484-25.23542
9-0.0001916-25.23561
10-0.0001059-25.23572
11-0.0000583-25.23578
12-0.0000318-25.23581
13-0.0000171-25.23583
14-9.e-6-25.23583
15-4.6e-6-25.23584
16-2.3e-6-25.23584
17-1.1e-6-25.23584
18-5.e-7-25.23584
19-2.e-7-25.23584
20-6.e-8-25.23584
210.e-9-25.23584
222.e-8-25.23584
233.e-8-25.23584
242.e-8-25.23584
252.e-8-25.23584
261.e-8-25.23584
271.e-8-25.23584
280.e-8-25.23584
290.e-8-25.23584
300.e-8-25.23584
310.e-9-25.23584
320.e-9-25.23584
330.e-9-25.23584
340.e-9-25.23584
350.e-9-25.23584
360.e-10-25.23584
370.e-10-25.23584
380.e-10-25.23584
390.e-10-25.23584
Exact energy-25.23584
Top of Page  Top of the page         Previous Example  Prev. (bh-mpn_Rfci)     Top oftable  Top of this table (bh-mpn_Rfci)     Next Example  Next (bo+-mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (bh-mpn_Rfci)     Top offigure  Top of this figure (bh-mpn_Rfci)     Next Example  Next (bo+-mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  0.7319, b = -3.5878 and c =  6.4716
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -25.13 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (bh-mpn_Rfci)     Top offigure  Top of this figure (bh-mpn_Rfci)     Next Example  Next (bo+-mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (bh-mpn_Rfci)     Top offigure  Top of this figure (bh-mpn_Rfci)     Next Example  Next (bo+-mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (bh-mpn_Rfci)     Top offigure  Top of this figure (bh-mpn_Rfci)     Next Example  Next (bo+-mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.