ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "cl--mpn_Rfci"

System cl--mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-459.5636448-459.56364
2-0.1591197-459.72276
3-0.0123508-459.73512
4-0.0031233-459.73824
5-0.0001915-459.73843
6-0.000612-459.73904
70.0001991-459.73884
8-0.0002264-459.73907
90.0001563-459.73891
10-0.0001407-459.73905
110.0001193-459.73893
12-0.0001075-459.73904
130.000098-459.73894
14-0.0000912-459.73904
150.0000862-459.73895
16-0.0000824-459.73903
170.0000796-459.73895
18-0.0000775-459.73903
190.000076-459.73895
20-0.000075-459.73903
210.0000743-459.73895
22-0.0000739-459.73903
230.0000738-459.73895
24-0.0000738-459.73903
250.000074-459.73895
26-0.0000743-459.73903
270.0000747-459.73895
28-0.0000752-459.73903
290.0000758-459.73895
30-0.0000765-459.73903
310.0000772-459.73895
32-0.000078-459.73903
330.0000788-459.73895
34-0.0000797-459.73903
350.0000806-459.73895
36-0.0000815-459.73903
370.0000825-459.73895
38-0.0000835-459.73903
390.0000845-459.73895
40-0.0000855-459.73903
410.0000866-459.73895
42-0.0000876-459.73904
430.0000887-459.73895
44-0.0000899-459.73904
450.000091-459.73895
46-0.0000922-459.73904
470.0000933-459.73894
48-0.0000945-459.73904
490.0000957-459.73894
50-0.000097-459.73904
510.0000982-459.73894
52-0.0000995-459.73904
530.0001008-459.73894
54-0.0001021-459.73904
550.0001034-459.73894
56-0.0001047-459.73904
570.0001061-459.73894
58-0.0001074-459.73905
590.0001088-459.73894
60-0.0001102-459.73905
610.0001116-459.73893
62-0.0001131-459.73905
630.0001145-459.73893
64-0.000116-459.73905
650.0001175-459.73893
66-0.000119-459.73905
670.0001205-459.73893
68-0.000122-459.73905
690.0001236-459.73893
70-0.0001251-459.73905
710.0001267-459.73893
72-0.0001283-459.73906
730.00013-459.73893
74-0.0001316-459.73906
750.0001333-459.73892
76-0.0001349-459.73906
770.0001366-459.73892
78-0.0001384-459.73906
790.0001401-459.73892
80-0.0001418-459.73906
810.0001436-459.73892
82-0.0001454-459.73906
830.0001472-459.73892
84-0.0001491-459.73907
850.0001509-459.73892
86-0.0001528-459.73907
870.0001547-459.73891
88-0.0001566-459.73907
890.0001585-459.73891
90-0.0001605-459.73907
910.0001625-459.73891
92-0.0001645-459.73907
930.0001665-459.73891
94-0.0001685-459.73908
950.0001706-459.73891
96-0.0001727-459.73908
970.0001748-459.73890
98-0.0001769-459.73908
990.0001791-459.73890
100-0.0001812-459.73908
1010.0001834-459.73890
102-0.0001856-459.73908
1030.0001879-459.73890
104-0.0001901-459.73909
1050.0001924-459.73889
106-0.0001947-459.73909
1070.0001971-459.73889
108-0.0001994-459.73909
1090.0002018-459.73889
110-0.0002042-459.73909
1110.0002067-459.73889
112-0.0002091-459.73910
1130.0002116-459.73888
114-0.0002141-459.73910
1150.0002166-459.73888
116-0.0002192-459.73910
1170.0002218-459.73888
118-0.0002244-459.73910
1190.000227-459.73888
120-0.0002297-459.73911
1210.0002324-459.73887
122-0.0002351-459.73911
1230.0002378-459.73887
124-0.0002406-459.73911
1250.0002434-459.73887
126-0.0002462-459.73911
1270.000249-459.73887
128-0.0002519-459.73912
1290.0002548-459.73886
130-0.0002577-459.73912
1310.0002607-459.73886
132-0.0002637-459.73912
1330.0002667-459.73886
134-0.0002697-459.73913
1350.0002728-459.73885
136-0.0002759-459.73913
1370.000279-459.73885
138-0.0002822-459.73913
1390.0002854-459.73885
140-0.0002886-459.73914
1410.0002918-459.73884
142-0.0002951-459.73914
1430.0002984-459.73884
144-0.0003018-459.73914
1450.0003051-459.73884
146-0.0003085-459.73915
1470.000312-459.73883
148-0.0003154-459.73915
1490.0003189-459.73883
150-0.0003224-459.73915
1510.000326-459.73883
152-0.0003296-459.73916
1530.0003332-459.73882
154-0.0003368-459.73916
1550.0003405-459.73882
156-0.0003442-459.73916
1570.000348-459.73882
158-0.0003517-459.73917
1590.0003556-459.73881
160-0.0003594-459.73917
1610.0003633-459.73881
162-0.0003672-459.73918
1630.0003711-459.73880
164-0.0003751-459.73918
1650.0003791-459.73880
166-0.0003831-459.73918
1670.0003872-459.73880
Exact energy-459.73899
Top of Page  Top of the page         Previous Example  Prev. (cl--mpn_Rfci)     Top oftable  Top of this table (cl--mpn_Rfci)     Next Example  Next (ne-mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (cl--mpn_Rfci)     Top offigure  Top of this figure (cl--mpn_Rfci)     Next Example  Next (ne-mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  1.0332, b = -2.1076 and c =  0.0856
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -459.56 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (cl--mpn_Rfci)     Top offigure  Top of this figure (cl--mpn_Rfci)     Next Example  Next (ne-mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (cl--mpn_Rfci)     Top offigure  Top of this figure (cl--mpn_Rfci)     Next Example  Next (ne-mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (cl--mpn_Rfci)     Top offigure  Top of this figure (cl--mpn_Rfci)     Next Example  Next (ne-mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.