ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "f--mpn_Rfci"

System f--mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-99.4282824-99.42828
2-0.2376655-99.66595
30.0092736-99.65667
4-0.0181962-99.67487
50.0134028-99.66147
6-0.0165633-99.67803
70.0195325-99.65850
8-0.0248416-99.68334
90.032653-99.65069
10-0.0443676-99.69505
110.0618155-99.63324
12-0.0878961-99.72114
130.127058-99.59408
14-0.1861473-99.78022
150.2757172-99.50451
16-0.4120526-99.91656
170.6203168-99.29624
18-0.9394331-100.23568
191.4296639-98.80601
20-2.1843794-100.99039
213.3483351-97.64206
Exact energy-99.66937
Top of Page  Top of the page         Previous Example  Prev. (hcl-mpn_Rfci)     Top oftable  Top of this table (f--mpn_Rfci)     Next Example  Next (cl--mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (hcl-mpn_Rfci)     Top offigure  Top of this figure (f--mpn_Rfci)     Next Example  Next (cl--mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  1.8356, b = -2.9891 and c =  0.1161
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -99.43 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (hcl-mpn_Rfci)     Top offigure  Top of this figure (f--mpn_Rfci)     Next Example  Next (cl--mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (hcl-mpn_Rfci)     Top offigure  Top of this figure (f--mpn_Rfci)     Next Example  Next (cl--mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (hcl-mpn_Rfci)     Top offigure  Top of this figure (f--mpn_Rfci)     Next Example  Next (cl--mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.