ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "n2-mpn_Rfci"

System n2-mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-108.9495575-108.94956
2-0.3131762-109.26273
30.0072346-109.25550
4-0.0250621-109.28056
50.0061741-109.27439
6-0.0045028-109.27889
70.0012564-109.27763
8-0.0007118-109.27835
90.0000901-109.27826
10-0.0000386-109.27829
11-0.0000489-109.27834
120.0000235-109.27832
13-0.0000249-109.27834
149.2e-6-109.27833
15-5.7e-6-109.27834
161.e-6-109.27834
17-8.e-8-109.27834
18-6.e-7-109.27834
195.e-7-109.27834
Exact energy-109.27834
Top of Page  Top of the page         Previous Example  Prev. (cn+-mpn_Rfci)     Top oftable  Top of this table (n2-mpn_Rfci)     Next Example  Next (hf-mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (cn+-mpn_Rfci)     Top offigure  Top of this figure (n2-mpn_Rfci)     Next Example  Next (hf-mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  0.6937, b = -3.4094 and c =  9.6346
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -108.95 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (cn+-mpn_Rfci)     Top offigure  Top of this figure (n2-mpn_Rfci)     Next Example  Next (hf-mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (cn+-mpn_Rfci)     Top offigure  Top of this figure (n2-mpn_Rfci)     Next Example  Next (hf-mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (cn+-mpn_Rfci)     Top offigure  Top of this figure (n2-mpn_Rfci)     Next Example  Next (hf-mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.