ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci

Moller-Plesset perturbation theory: example "oh--mpn_Rfci"

System oh--mpn_Rfci

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-75.3958843-75.39588
2-0.2410563-75.63694
30.0076324-75.62931
4-0.0197846-75.64909
50.0109186-75.63817
6-0.0130533-75.65123
70.0140335-75.63719
8-0.0167046-75.65390
90.0201177-75.63378
10-0.0249078-75.65869
110.0313948-75.62729
12-0.0402338-75.66753
130.0522795-75.61525
14-0.0687623-75.68401
150.0914192-75.59259
16-0.1227301-75.71532
170.1662524-75.54907
18-0.2271264-75.77620
190.3128365-75.46336
20-0.4343715-75.89773
210.60801-75.28972
22-0.8580987-76.14782
231.2214199-74.92640
24-1.7541323-76.68053
252.5429122-74.13762
26-3.7230195-77.86064
275.5078676-72.35277
Exact energy-75.64486
Top of Page  Top of the page         Previous Example  Prev. (ne-mpn_Rfci)     Top oftable  Top of this table (oh--mpn_Rfci)     Next Example  Next (sh--mpn_Rfci)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (ne-mpn_Rfci)     Top offigure  Top of this figure (oh--mpn_Rfci)     Next Example  Next (sh--mpn_Rfci)          Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  1.6338, b = -3.0431 and c =  0.2186
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -75.40 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (ne-mpn_Rfci)     Top offigure  Top of this figure (oh--mpn_Rfci)     Next Example  Next (sh--mpn_Rfci)          Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (ne-mpn_Rfci)     Top offigure  Top of this figure (oh--mpn_Rfci)     Next Example  Next (sh--mpn_Rfci)          Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (ne-mpn_Rfci)     Top offigure  Top of this figure (oh--mpn_Rfci)     Next Example  Next (sh--mpn_Rfci)          Mathematica program  Mathematica program


ar-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibh-mpn_Rfcibo+-mpn_Rfcic2-mpn_Rfcicn+-mpn_Rfcin2-mpn_Rfcihf-mpn_Rfcihf-mpn_Rfcihcl-mpn_Rfcihcl-mpn_Rfcif--mpn_Rfcicl--mpn_Rfcicl--mpn_Rfcine-mpn_Rfcioh--mpn_Rfcish--mpn_Rfci
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.