cc1C2 cc1H2O cc2BH cc3BH cc4BH cc4x2BH cca2BH cca3BH cca4BH ccaAr ccaClm ccaFm ccaHCl ccaHF ccaNe cc+C2 ccCNp ccFm cc+H2O ccH2O ccH2Op ccHF ccN2 ccNe cctCH2B cctFm cctHF cctNe CH3

# Moller-Plesset perturbation theory: example "ccaHF"

### Content

Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-100.033094-100.03309
2-0.222711-100.25581
3-0.000612-100.25642
4-0.008642-100.26506
50.002597-100.26246
6-0.002709-100.26517
70.001897-100.26327
8-0.001636-100.26491
90.001393-100.26352
10-0.001264-100.26478
110.001179-100.26360
12-0.001137-100.26474
130.001125-100.26361
14-0.001139-100.26475
150.001176-100.26358
16-0.001236-100.26481
170.00132-100.26349
18-0.00143-100.26492
190.001569-100.26335
20-0.00174-100.26509
210.00195-100.26314
Exact energy-100.26418
Top of the page           Prev. (ccaHCl)       Top of this table (ccaHF)       Next (ccaNe)            Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Top of the page           Prev. (ccaHCl)       Top of this figure (ccaHF)       Next (ccaNe)            Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  1.4485, b = -4.7613 and c =  1.6369
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -100.03 is not shown because it is too small and out of scale
Top of the page           Prev. (ccaHCl)       Top of this figure (ccaHF)       Next (ccaNe)            Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Top of the page           Prev. (ccaHCl)       Top of this figure (ccaHF)       Next (ccaNe)            Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to diagonal quadratic approximants,
right panel to differential approximants.
N is number of coefficients used for construction of the approximant.
Top of the page           Prev. (ccaHCl)       Top of this figure (ccaHF)       Next (ccaNe)            Mathematica program

 cc1C2 cc1H2O cc2BH cc3BH cc4BH cc4x2BH cca2BH cca3BH cca4BH ccaAr ccaClm ccaFm ccaHCl ccaHF ccaNe cc+C2 ccCNp ccFm cc+H2O ccH2O ccH2Op ccHF ccN2 ccNe cctCH2B cctFm cctHF cctNe CH3
 List of examples of MP series Mathematica programs Work in UMassD Unpublished reports

Designed by A. Sergeev.