cc1C2cc1H2Occ2BHcc3BHcc4BHcc4x2BHcca2BHcca3BHcca4BHccaArccaClmccaFmccaHClccaHFccaNecc+C2ccCNpccFmcc+H2OccH2OccH2OpccHFccN2ccNecctCH2BcctFmcctHFcctNeCH3

Moller-Plesset perturbation theory: example "ccHF"

System ccHF (class B)

Content


Coefficients of Moller-Plesset perturbation series
nEnPartial sum
1-100.019278-100.01928
2-0.201768-100.22105
3-0.002885-100.22393
4-0.004225-100.22816
5-0.000061-100.22822
6-0.000442-100.22866
70.000079-100.22858
8-0.000085-100.22866
90.000027-100.22864
10-0.000019-100.22866
119.e-6-100.22865
12-6.e-6-100.22865
133.e-6-100.22865
14-2.e-6-100.22865
152.e-6-100.22865
Exact energy-100.22865
Top of Page  Top of the page         Previous Example  Prev. (ccH2Op)     Top oftable  Top of this table (ccHF)     Next Example  Next (ccN2)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (ccH2Op)     Top offigure  Top of this figure (ccHF)     Next Example  Next (ccN2)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Scaled coefficients of Moller-Plesset perturbation theory.
Parameters a =  0.9571, b = -5.4764 and c =  7.3476
are chosen so that scaled coefficients remain of order of one in magnitude for all n.
Coefficient E1 = -100.02 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (ccH2Op)     Top offigure  Top of this figure (ccHF)     Next Example  Next (ccN2)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Convergence of summation approximants for the Moller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (ccH2Op)     Top offigure  Top of this figure (ccHF)     Next Example  Next (ccN2)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to diagonal quadratic approximants,
right panel to differential approximants.
N is number of coefficients used for construction of the approximant.
Location of singularities in the complex plane
Top of Page  Top of the page         Previous Example  Prev. (ccH2Op)     Top offigure  Top of this figure (ccHF)     Next Example  Next (ccN2)          Mathematica program  Mathematica program


cc1C2cc1H2Occ2BHcc3BHcc4BHcc4x2BHcca2BHcca3BHcca4BHccaArccaClmccaFmccaHClccaHFccaNecc+C2ccCNpccFmcc+H2OccH2OccH2OpccHFccN2ccNecctCH2BcctFmcctHFcctNeCH3
List of examples of MP series Blank Mathematica programs Blank Work in UMassD BlankWaste icon Unpublished reports

Designed by A. Sergeev.