Møller-Plesset perturbation theory: example "o3"

Molecule F-. Basis cc-pVTZ-(f). Structure ""

Content


Exampleso1o2o3o4o5o6o7o8o9
MoleculeNeNeF-HFH2OCH2CH2C2N2
Basiscc-pVDZcc-pVTZ-(f)cc-pVTZ-(f)cc-pVTZ-(f/d)cc-pVDZ(+)aug-cc-pVDZcc-pVTZ-(f/d)cc-pVDZ(+)cc-pVDZ

Molecule - icon for Allen-dataBlankExamples of MP seriesBlankSource code of Mathematica programBlankMathematica programsBlankWork in UMass DartmouthWork in UMassDBlankWaste iconUnpublished reports

Coefficients of Møller-Plesset perturbation series
nEnPartial sum
1 -99.926 017  -99.926 017 
2  0.247 6  -99.678 417 
3 -0.004 645  -99.683 062 
4  0.008 92  -99.674 142 
5 -0.001 88  -99.676 022 
6  0.001 058  -99.674 964 
7 -0.000 319  -99.675 283 
8  0.000 161  -99.675 122 
9 -0.000 056  -99.675 178 
10  0.000 027  -99.675 151 
11 -0.000 01  -99.675 161 
12  0.000 004  -99.675 157 
13 -0.000 002  -99.675 159 
Exact energy -99.675 158 
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          Mathematica program  Mathematica program

Coefficients of Moller-Plesset perturbation theory, semilogarithmic plot.
Red/blue dots correspond to positive/negative coefficients
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Scaled coefficients of Møller-Plesset perturbation theory.
Parameters a =  0.5597, b = -2.8005 and c =  4.4673
are chosen to make scaled coefficients of order of one in magnitude for all n.
Coefficient E1 = -99.93 is not shown because it is too small and out of scale
Plot of MP coefficients
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Convergence of summation approximants for the Møller - Plesset series
measured in growth of number of accurate decimal digits of summation results
with increase of n, number of used coefficients.
The summation methods are partial sums (red connected disks),
Pade approximants (blue circles),
quadratic approximants (green boxes),
cubic, quartic, fifth and sixth degree approximants
(triangles, diamonds, pentagonal and hexagonal stars respectively).
Plot of number of accurate digits
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          PDF format for printing  PDF format     Mathematica program  Mathematica program

Location of singularities in the complex plane of the parameter z.
Left panel refers to quadratic approximants,
right panel to differential approximants.
To view an individual approximant, click on the right bar.
To view all singularities with their weights, see this table.
Location of singularities in the  complex plane
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          Mathematica program  Mathematica program

The function E(z) found by summation of its power series.
Dashed line indicates that the approximant is complex valued.
Red dot marks exact physical energy at z = 1.
To view results of summation of a specific number of terms of the series, click on the right bar.
Partial sums, Pade and quadratic approximants
Top of Page  Top of the page         Previous Example  Prev. (o2)     Next Example  Next (o4)          Mathematica program  Mathematica program


Exampleso1o2o3o4o5o6o7o8o9
MoleculeNeNeF-HFH2OCH2CH2C2N2
Basiscc-pVDZcc-pVTZ-(f)cc-pVTZ-(f)cc-pVTZ-(f/d)cc-pVDZ(+)aug-cc-pVDZcc-pVTZ-(f/d)cc-pVDZ(+)cc-pVDZ

Known inaccuracies


Molecule - icon for Allen-dataBlankExamples of MP seriesBlankSource code of Mathematica programBlankMathematica programsBlankWork in UMass DartmouthWork in UMassDBlankWaste iconUnpublished reports

Designed by A. Sergeev.