Singularities of Møller-Plesset series: example "BH aug-cc-pVQZ 2.0r_e"
Molecule X 1^Sigma+ State of BH. Basis AUG-CC-PVQZ. Structure ""
Content
- Definition of quadratic approximants
- Approximant [1, 0, 0]
- Approximant [1, 1, 0]
- Approximant [1, 1, 1]
- Approximant [2, 1, 1]
- Approximant [2, 2, 1]
- Approximant [2, 2, 2]
- Approximant [3, 2, 2]
- Approximant [3, 3, 2]
- Approximant [3, 3, 3]
- Approximant [4, 3, 3]
- Approximant [4, 4, 3]
- Approximant [4, 4, 4]
- Approximant [5, 4, 4]
- Approximant [5, 5, 4]
- Approximant [5, 5, 5]
- Approximant [6, 5, 5]
- Approximant [6, 6, 5]
- Approximant [6, 6, 6]
- Approximant [7, 6, 6]
- Approximant [7, 7, 6]
Quadratic approximants
[n1, n2, n3] approximant is defined
as a solution of the quadratic equation
A(z)f2 + B(z)f + C(z) = 0
with polynomial coefficients A(z),
B(z) and
C(z) of degree
n3, n2 and n1 respectively.
Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.
Table 1. Singularities with their weights for the quadratic approximant [1, 0, 0] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.0447 | 0.185 |
![Singularities of quadratic [1, 0, 0] approximant](singsq1.gif?457046) |
Top of the page
Table 2. Singularities with their weights for the quadratic approximant [1, 1, 0] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 0.8522 | 0.125 |
![Singularities of quadratic [1, 1, 0] approximant](singsq2.gif?865897) |
2 | 90.9777 | 1.29 i |
Top of the page
Table 3. Singularities with their weights for the quadratic approximant [1, 1, 1] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3109 | 0.767 |
![Singularities of quadratic [1, 1, 1] approximant](singsq3.gif?9094) |
2 | -2.5028 | 0.248 |
Top of the page
Table 4. Singularities with their weights for the quadratic approximant [2, 1, 1] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3959 | 1.21 |
![Singularities of quadratic [2, 1, 1] approximant](singsq4.gif?848220) |
2 | -2.8235 | 0.266 |
3 | 10.5399 | 0.294 i |
Top of the page
Table 5. Singularities with their weights for the quadratic approximant [2, 2, 1] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | -1.654 | 0.06 |
![Singularities of quadratic [2, 2, 1] approximant](singsq5.gif?147029) |
2 | 2.047 | 0.859 |
3 | 3.5668 | 0.185 i |
4 | -4.8073 | 0.0926 i |
Top of the page
Table 6. Singularities with their weights for the quadratic approximant [2, 2, 2] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4018 + 0.6443 i | 0.341 - 0.00882 i |
![Singularities of quadratic [2, 2, 2] approximant](singsq6.gif?931072) |
2 | 1.4018 - 0.6443 i | 0.341 + 0.00882 i |
3 | -2.1448 | 0.128 |
4 | 2.9653 | 1.5 |
Top of the page
Table 7. Singularities with their weights for the quadratic approximant [3, 2, 2] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 0.821 + 0.0358 i | 0.0105 - 0.00924 i |
![Singularities of quadratic [3, 2, 2] approximant](singsq7.gif?161096) |
2 | 0.821 - 0.0358 i | 0.0105 + 0.00924 i |
3 | -1.7309 + 1.125 i | 0.0448 + 0.0123 i |
4 | -1.7309 - 1.125 i | 0.0448 - 0.0123 i |
5 | 4.7484 | 0.179 |
Top of the page
Table 8. Singularities with their weights for the quadratic approximant [3, 3, 2] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3117 + 0.2627 i | 0.602 + 0.0636 i |
![Singularities of quadratic [3, 3, 2] approximant](singsq8.gif?833365) |
2 | 1.3117 - 0.2627 i | 0.602 - 0.0636 i |
3 | 1.8756 | 0.431 |
4 | -2.2763 | 0.252 |
5 | -6.4693 | 0.203 i |
6 | 78.5239 | 0.754 i |
Top of the page
Table 9. Singularities with their weights for the quadratic approximant [3, 3, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3015 + 0.3001 i | 0.4 + 0.153 i |
![Singularities of quadratic [3, 3, 3] approximant](singsq9.gif?118301) |
2 | 1.3015 - 0.3001 i | 0.4 - 0.153 i |
3 | -1.857 + 0.5952 i | 0.0242 + 0.0516 i |
4 | -1.857 - 0.5952 i | 0.0242 - 0.0516 i |
5 | 2.1179 | 0.369 |
6 | -2.3738 | 0.0468 |
Top of the page
Table 10. Singularities with their weights for the quadratic approximant [4, 3, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3094 + 0.4086 i | 0.0759 - 0.543 i |
![Singularities of quadratic [4, 3, 3] approximant](singsq10.gif?483640) |
2 | 1.3094 - 0.4086 i | 0.0759 + 0.543 i |
3 | 1.7687 | 0.392 |
4 | -2.7382 | 3.34 |
5 | -3.1932 | 1.75 i |
6 | 3.8587 | 2.37 i |
7 | 19.1135 | 1.49 |
Top of the page
Table 11. Singularities with their weights for the quadratic approximant [4, 4, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 0.1627 | 4.65e-6 |
![Singularities of quadratic [4, 4, 3] approximant](singsq11.gif?917185) |
2 | 0.1627 | 4.65e-6 i |
3 | 1.3177 | 0.135 |
4 | 1.3151 + 0.5601 i | 0.135 + 0.0835 i |
5 | 1.3151 - 0.5601 i | 0.135 - 0.0835 i |
6 | -3.1737 + 0.2728 i | 0.00819 + 0.331 i |
7 | -3.1737 - 0.2728 i | 0.00819 - 0.331 i |
8 | 16.8282 | 0.283 i |
Top of the page
Table 12. Singularities with their weights for the quadratic approximant [4, 4, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2249 + 0.374 i | 0.176 + 0.218 i |
![Singularities of quadratic [4, 4, 4] approximant](singsq12.gif?389462) |
2 | 1.2249 - 0.374 i | 0.176 - 0.218 i |
3 | 1.5309 + 0.2945 i | 0.305 - 0.0676 i |
4 | 1.5309 - 0.2945 i | 0.305 + 0.0676 i |
5 | 2.1372 | 0.414 |
6 | -2.5534 + 0.6403 i | 0.231 + 0.155 i |
7 | -2.5534 - 0.6403 i | 0.231 - 0.155 i |
8 | -7.2945 | 0.61 |
Top of the page
Table 13. Singularities with their weights for the quadratic approximant [5, 4, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2092 + 0.4302 i | 0.0655 - 0.154 i |
![Singularities of quadratic [5, 4, 4] approximant](singsq13.gif?813649) |
2 | 1.2092 - 0.4302 i | 0.0655 + 0.154 i |
3 | 1.4485 + 0.1097 i | 0.155 - 0.0581 i |
4 | 1.4485 - 0.1097 i | 0.155 + 0.0581 i |
5 | -2.5602 + 0.5721 i | 0.186 + 0.29 i |
6 | -2.5602 - 0.5721 i | 0.186 - 0.29 i |
7 | 2.8718 | 0.514 |
8 | -8.2734 | 0.39 |
9 | 10.8348 | 0.721 i |
Top of the page
Table 14. Singularities with their weights for the quadratic approximant [5, 5, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.177 + 0.4453 i | 0.0474 - 0.074 i |
![Singularities of quadratic [5, 5, 4] approximant](singsq14.gif?607217) |
2 | 1.177 - 0.4453 i | 0.0474 + 0.074 i |
3 | 1.2659 | 0.0455 |
4 | 1.3617 | 0.0664 i |
5 | -2.4811 + 0.458 i | 0.143 - 0.291 i |
6 | -2.4811 - 0.458 i | 0.143 + 0.291 i |
7 | 3.2111 | 1.29 |
8 | -5.7441 | 0.15 |
9 | 7.0201 | 0.655 i |
10 | -50.6093 | 0.537 i |
Top of the page
Table 15. Singularities with their weights for the quadratic approximant [5, 5, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.1759 + 0.4449 i | 0.0457 - 0.0741 i |
![Singularities of quadratic [5, 5, 5] approximant](singsq15.gif?849677) |
2 | 1.1759 - 0.4449 i | 0.0457 + 0.0741 i |
3 | 1.2633 | 0.0467 |
4 | 1.367 | 0.0703 i |
5 | -2.4952 + 0.4864 i | 0.0704 - 0.328 i |
6 | -2.4952 - 0.4864 i | 0.0704 + 0.328 i |
7 | 3.7501 | 5.05 |
8 | 4.585 | 6.39 i |
9 | -5.9667 | 0.183 |
10 | 36.7277 | 78.2 |
Top of the page
Table 16. Singularities with their weights for the quadratic approximant [6, 5, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.1878 + 0.4417 i | 0.0484 - 0.103 i |
![Singularities of quadratic [6, 5, 5] approximant](singsq16.gif?468956) |
2 | 1.1878 - 0.4417 i | 0.0484 + 0.103 i |
3 | 1.3579 | 0.0924 |
4 | 1.54 | 0.206 i |
5 | -2.5046 + 0.718 i | 0.157 + 0.063 i |
6 | -2.5046 - 0.718 i | 0.157 - 0.063 i |
7 | 2.6626 + 1.6863 i | 0.0351 + 0.243 i |
8 | 2.6626 - 1.6863 i | 0.0351 - 0.243 i |
9 | -4.6562 + 1.4236 i | 0.117 + 0.204 i |
10 | -4.6562 - 1.4236 i | 0.117 - 0.204 i |
11 | 19.1322 | 0.478 |
Top of the page
Table 17. Singularities with their weights for the quadratic approximant [6, 6, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2044 + 0.4354 i | 0.0326 - 0.17 i |
![Singularities of quadratic [6, 6, 5] approximant](singsq17.gif?697102) |
2 | 1.2044 - 0.4354 i | 0.0326 + 0.17 i |
3 | 1.5239 | 0.254 |
4 | 1.6074 + 0.5634 i | 0.198 + 0.0962 i |
5 | 1.6074 - 0.5634 i | 0.198 - 0.0962 i |
6 | 1.8092 + 0.9091 i | 0.222 - 0.0718 i |
7 | 1.8092 - 0.9091 i | 0.222 + 0.0718 i |
8 | -2.5348 + 0.5802 i | 0.197 + 0.272 i |
9 | -2.5348 - 0.5802 i | 0.197 - 0.272 i |
10 | -5.3132 | 0.248 |
11 | -22.1475 | 0.324 i |
12 | 24.682 | 0.371 i |
Top of the page
Table 18. Singularities with their weights for the quadratic approximant [6, 6, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | -0.5617 + 0.e-5 i | 0.0000119 + 0.0000119 i |
![Singularities of quadratic [6, 6, 6] approximant](singsq18.gif?536001) |
2 | -0.5617 - 0.e-5 i | 0.0000119 - 0.0000119 i |
3 | 1.1809 + 0.4111 i | 0.0377 + 0.0723 i |
4 | 1.1809 - 0.4111 i | 0.0377 - 0.0723 i |
5 | 1.3492 + 0.8382 i | 0.0344 + 0.0266 i |
6 | 1.3492 - 0.8382 i | 0.0344 - 0.0266 i |
7 | 1.6313 | 0.568 |
8 | 1.4334 + 0.9849 i | 0.0408 - 0.028 i |
9 | 1.4334 - 0.9849 i | 0.0408 + 0.028 i |
10 | -2.4945 + 0.5266 i | 0.00778 + 0.256 i |
11 | -2.4945 - 0.5266 i | 0.00778 - 0.256 i |
12 | -8.0542 | 0.517 |
Top of the page
Table 19. Singularities with their weights for the quadratic approximant [7, 6, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2268 + 0.4411 i | 0.0773 - 0.352 i |
![Singularities of quadratic [7, 6, 6] approximant](singsq19.gif?245304) |
2 | 1.2268 - 0.4411 i | 0.0773 + 0.352 i |
3 | 1.3629 + 0.4613 i | 0.417 + 0.126 i |
4 | 1.3629 - 0.4613 i | 0.417 - 0.126 i |
5 | 1.5336 + 0.4115 i | 2.47 + 6.22 i |
6 | 1.5336 - 0.4115 i | 2.47 - 6.22 i |
7 | 2.2445 | 0.442 |
8 | -2.5318 + 0.6058 i | 0.204 + 0.213 i |
9 | -2.5318 - 0.6058 i | 0.204 - 0.213 i |
10 | -5.3587 | 0.412 |
11 | 6.3267 | 1.27 i |
12 | -9.1568 | 0.742 i |
13 | 63.8252 | 4.85 |
Top of the page
Table 20. Singularities with their weights for the quadratic approximant [7, 7, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2073 + 0.4543 i | 0.116 - 0.126 i |
![Singularities of quadratic [7, 7, 6] approximant](singsq20.gif?647612) |
2 | 1.2073 - 0.4543 i | 0.116 + 0.126 i |
3 | 1.5533 + 0.3727 i | 0.286 - 0.0182 i |
4 | 1.5533 - 0.3727 i | 0.286 + 0.0182 i |
5 | 1.671 | 0.25 |
6 | 1.8542 + 0.5356 i | 1.29 + 0.0335 i |
7 | 1.8542 - 0.5356 i | 1.29 - 0.0335 i |
8 | -1.9816 | 0.0208 |
9 | -1.994 | 0.0209 i |
10 | -2.5867 + 0.5698 i | 0.707 + 0.476 i |
11 | -2.5867 - 0.5698 i | 0.707 - 0.476 i |
12 | -4.3293 | 0.162 |
13 | 12.9419 | 0.308 i |
14 | -16.9754 | 0.236 i |
Top of the page
Designed by A. Sergeev.