Singularities of Møller-Plesset series: example "H--cc-pV5Z"
Molecule H- ion. Basis AUG-CC-PV5Z. Structure ""
Content
- Definition of quadratic approximants
- Approximant [2, 2, 2]
- Approximant [2, 2, 3]
- Approximant [2, 3, 3]
- Approximant [3, 3, 3]
- Approximant [3, 3, 4]
- Approximant [3, 4, 4]
- Approximant [4, 4, 4]
- Approximant [4, 4, 5]
- Approximant [4, 5, 5]
- Approximant [5, 5, 5]
- Approximant [5, 5, 6]
- Approximant [5, 6, 6]
- Approximant [6, 6, 6]
- Approximant [6, 6, 7]
- Approximant [6, 7, 7]
Quadratic approximants
[n1, n2, n3] approximant is defined
as a solution of the quadratic equation
A(z)f2 + B(z)f + C(z) = 0
with polynomial coefficients A(z),
B(z) and
C(z) of degree
n3, n2 and n1 respectively.
Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.
Table 1. Singularities with their weights for the quadratic approximant [2, 2, 2] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3368 | 0.0434 |
![Singularities of quadratic [2, 2, 2] approximant](singsq1.gif?371834) |
2 | 2.1034 | 0.0871 i |
3 | 10.0647 | 0.0755 |
4 | -10.7919 | 2.73 |
Top of the page
Table 2. Singularities with their weights for the quadratic approximant [2, 2, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3605 | 0.0516 |
![Singularities of quadratic [2, 2, 3] approximant](singsq2.gif?684216) |
2 | 2.1407 | 0.0961 i |
3 | -6.5591 | 0.568 |
4 | 6.0711 + 5.0139 i | 0.0648 - 0.0736 i |
5 | 6.0711 - 5.0139 i | 0.0648 + 0.0736 i |
Top of the page
Table 3. Singularities with their weights for the quadratic approximant [2, 3, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 0.664 | 0.000618 |
![Singularities of quadratic [2, 3, 3] approximant](singsq3.gif?619500) |
2 | 0.6705 | 0.000618 i |
3 | 1.1971 | 0.00917 |
4 | 3.0455 | 0.741 i |
5 | -5.4311 | 0.068 |
6 | -15.1764 | 0.822 i |
Top of the page
Table 4. Singularities with their weights for the quadratic approximant [3, 3, 3] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | -0.0973 + 0.e-5 i | 1.7e-7 + 1.7e-7 i |
![Singularities of quadratic [3, 3, 3] approximant](singsq4.gif?225331) |
2 | -0.0973 - 0.e-5 i | 1.7e-7 - 1.7e-7 i |
3 | 1.1673 + 0.3612 i | 0.00506 - 0.00132 i |
4 | 1.1673 - 0.3612 i | 0.00506 + 0.00132 i |
5 | 1.7743 | 0.0199 |
6 | 32.989 | 0.0303 i |
Top of the page
Table 5. Singularities with their weights for the quadratic approximant [3, 3, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.2991 | 0.0106 |
![Singularities of quadratic [3, 3, 4] approximant](singsq5.gif?662202) |
2 | 1.3956 + 0.6519 i | 0.00943 - 0.015 i |
3 | 1.3956 - 0.6519 i | 0.00943 + 0.015 i |
4 | 1.774 | 0.0364 i |
5 | 2.9478 | 0.467 |
6 | -3.4791 + 6.0367 i | 0.0645 - 0.0435 i |
7 | -3.4791 - 6.0367 i | 0.0645 + 0.0435 i |
Top of the page
Table 6. Singularities with their weights for the quadratic approximant [3, 4, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4096 + 0.371 i | 0.02 + 0.000945 i |
![Singularities of quadratic [3, 4, 4] approximant](singsq6.gif?168664) |
2 | 1.4096 - 0.371 i | 0.02 - 0.000945 i |
3 | 1.5742 + 1.7988 i | 0.0148 + 0.00581 i |
4 | 1.5742 - 1.7988 i | 0.0148 - 0.00581 i |
5 | 1.3609 + 2.9873 i | 0.0151 - 0.00846 i |
6 | 1.3609 - 2.9873 i | 0.0151 + 0.00846 i |
7 | -4.6373 + 0.5599 i | 0.0119 + 0.00778 i |
8 | -4.6373 - 0.5599 i | 0.0119 - 0.00778 i |
Top of the page
Table 7. Singularities with their weights for the quadratic approximant [4, 4, 4] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4489 + 0.281 i | 0.0272 - 0.0439 i |
![Singularities of quadratic [4, 4, 4] approximant](singsq7.gif?445303) |
2 | 1.4489 - 0.281 i | 0.0272 + 0.0439 i |
3 | 1.9501 + 0.9484 i | 0.0238 + 0.0476 i |
4 | 1.9501 - 0.9484 i | 0.0238 - 0.0476 i |
5 | 1.7157 + 2.8947 i | 0.0272 + 0.0161 i |
6 | 1.7157 - 2.8947 i | 0.0272 - 0.0161 i |
7 | -0.0112 + 6.6159 i | 0.0281 - 0.0231 i |
8 | -0.0112 - 6.6159 i | 0.0281 + 0.0231 i |
Top of the page
Table 8. Singularities with their weights for the quadratic approximant [4, 4, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 0.1016 | 5.39e-9 - 5.39e-9 i |
![Singularities of quadratic [4, 4, 5] approximant](singsq8.gif?299595) |
2 | 0.1016 | 5.39e-9 + 5.39e-9 i |
3 | 1.4142 + 0.4346 i | 0.0112 + 0.00838 i |
4 | 1.4142 - 0.4346 i | 0.0112 - 0.00838 i |
5 | 1.5689 + 1.9677 i | 0.00186 + 0.0144 i |
6 | 1.5689 - 1.9677 i | 0.00186 - 0.0144 i |
7 | 1.6725 + 5.3755 i | 0.0113 + 0.023 i |
8 | 1.6725 - 5.3755 i | 0.0113 - 0.023 i |
9 | 10.329 | 0.0803 |
Top of the page
Table 9. Singularities with their weights for the quadratic approximant [4, 5, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4438 + 0.2602 i | 0.00993 - 0.0522 i |
![Singularities of quadratic [4, 5, 5] approximant](singsq9.gif?40744) |
2 | 1.4438 - 0.2602 i | 0.00993 + 0.0522 i |
3 | 1.8665 + 0.9321 i | 0.0235 + 0.03 i |
4 | 1.8665 - 0.9321 i | 0.0235 - 0.03 i |
5 | 1.6335 + 2.7804 i | 0.0193 + 0.00888 i |
6 | 1.6335 - 2.7804 i | 0.0193 - 0.00888 i |
7 | -0.6951 + 5.5948 i | 0.018 - 0.0164 i |
8 | -0.6951 - 5.5948 i | 0.018 + 0.0164 i |
9 | 12.9401 + 14.9992 i | 0.0578 - 0.00181 i |
10 | 12.9401 - 14.9992 i | 0.0578 + 0.00181 i |
Top of the page
Table 10. Singularities with their weights for the quadratic approximant [5, 5, 5] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.3793 + 0.3146 i | 0.013 - 0.0126 i |
![Singularities of quadratic [5, 5, 5] approximant](singsq10.gif?481453) |
2 | 1.3793 - 0.3146 i | 0.013 + 0.0126 i |
3 | 1.6896 + 0.2609 i | 0.0154 + 0.0305 i |
4 | 1.6896 - 0.2609 i | 0.0154 - 0.0305 i |
5 | 1.7107 + 0.9299 i | 0.0142 + 0.0201 i |
6 | 1.7107 - 0.9299 i | 0.0142 - 0.0201 i |
7 | 1.6481 + 2.9057 i | 0.0233 + 0.0113 i |
8 | 1.6481 - 2.9057 i | 0.0233 - 0.0113 i |
9 | -0.0018 + 6.1414 i | 0.0245 - 0.0212 i |
10 | -0.0018 - 6.1414 i | 0.0245 + 0.0212 i |
Top of the page
Table 11. Singularities with their weights for the quadratic approximant [5, 5, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4399 + 0.2821 i | 0.0224 - 0.039 i |
![Singularities of quadratic [5, 5, 6] approximant](singsq11.gif?389222) |
2 | 1.4399 - 0.2821 i | 0.0224 + 0.039 i |
3 | 1.8801 + 1.0814 i | 0.0035 + 0.0364 i |
4 | 1.8801 - 1.0814 i | 0.0035 - 0.0364 i |
5 | 1.5257 + 3.2079 i | 0.00498 + 0.0186 i |
6 | 1.5257 - 3.2079 i | 0.00498 - 0.0186 i |
7 | -2.5468 + 3.9706 i | 0.00574 + 0.00595 i |
8 | -2.5468 - 3.9706 i | 0.00574 - 0.00595 i |
9 | -3.5578 + 3.5523 i | 0.0081 - 0.0043 i |
10 | -3.5578 - 3.5523 i | 0.0081 + 0.0043 i |
11 | -12.8551 | 0.384 |
Top of the page
Table 12. Singularities with their weights for the quadratic approximant [5, 6, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4396 + 0.3151 i | 0.0258 - 0.00663 i |
![Singularities of quadratic [5, 6, 6] approximant](singsq12.gif?388563) |
2 | 1.4396 - 0.3151 i | 0.0258 + 0.00663 i |
3 | 1.501 | 0.0391 |
4 | 1.6535 | 3.24 i |
5 | 2.136 + 1.4428 i | 0.0483 + 0.0314 i |
6 | 2.136 - 1.4428 i | 0.0483 - 0.0314 i |
7 | 2.7204 | 0.311 |
8 | -3.5237 + 0.035 i | 0.00168 + 0.00165 i |
9 | -3.5237 - 0.035 i | 0.00168 - 0.00165 i |
10 | 0.6449 + 4.3066 i | 0.0212 + 0.0126 i |
11 | 0.6449 - 4.3066 i | 0.0212 - 0.0126 i |
12 | 8.0551 | 0.086 i |
Top of the page
Table 13. Singularities with their weights for the quadratic approximant [6, 6, 6] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4559 + 0.3036 i | 0.0435 - 0.00935 i |
![Singularities of quadratic [6, 6, 6] approximant](singsq13.gif?33784) |
2 | 1.4559 - 0.3036 i | 0.0435 + 0.00935 i |
3 | 1.7119 | 0.0621 |
4 | 2.0313 + 0.42 i | 0.0498 + 0.125 i |
5 | 2.0313 - 0.42 i | 0.0498 - 0.125 i |
6 | 2.1325 + 1.5777 i | 0.0267 + 0.0394 i |
7 | 2.1325 - 1.5777 i | 0.0267 - 0.0394 i |
8 | -3.8379 + 0.0543 i | 0.00236 + 0.00227 i |
9 | -3.8379 - 0.0543 i | 0.00236 - 0.00227 i |
10 | 0.5927 + 4.2771 i | 0.02 + 0.0123 i |
11 | 0.5927 - 4.2771 i | 0.02 - 0.0123 i |
12 | 9.0224 | 0.0761 i |
Top of the page
Table 14. Singularities with their weights for the quadratic approximant [6, 6, 7] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | 1.4554 + 0.2996 i | 0.043 - 0.016 i |
![Singularities of quadratic [6, 6, 7] approximant](singsq14.gif?926305) |
2 | 1.4554 - 0.2996 i | 0.043 + 0.016 i |
3 | 1.6764 | 0.0712 |
4 | 1.9388 | 0.199 i |
5 | 2.239 + 1.3475 i | 0.108 + 0.0637 i |
6 | 2.239 - 1.3475 i | 0.108 - 0.0637 i |
7 | 3.0428 | 0.24 |
8 | 0.7335 + 4.5262 i | 0.0323 + 0.0189 i |
9 | 0.7335 - 4.5262 i | 0.0323 - 0.0189 i |
10 | -5.1375 + 0.2493 i | 0.00971 + 0.00837 i |
11 | -5.1375 - 0.2493 i | 0.00971 - 0.00837 i |
12 | 19.6945 | 0.142 i |
13 | 77.4099 | 2.2 |
Top of the page
Table 15. Singularities with their weights for the quadratic approximant [6, 7, 7] The most stable singularity is highlighted. |
No. | zc | c | Location in the complex plane |
1 | -0.5573 | 7.4e-7 |
![Singularities of quadratic [6, 7, 7] approximant](singsq15.gif?729653) |
2 | -0.5573 | 7.4e-7 i |
3 | 1.4462 + 0.3171 i | 0.0297 - 0.00226 i |
4 | 1.4462 - 0.3171 i | 0.0297 + 0.00226 i |
5 | 1.5741 | 0.0496 |
6 | 2.0159 + 0.1787 i | 0.122 + 0.0914 i |
7 | 2.0159 - 0.1787 i | 0.122 - 0.0914 i |
8 | 2.1287 + 1.563 i | 0.0265 + 0.0357 i |
9 | 2.1287 - 1.563 i | 0.0265 - 0.0357 i |
10 | -3.8948 + 0.0535 i | 0.0029 + 0.00282 i |
11 | -3.8948 - 0.0535 i | 0.0029 - 0.00282 i |
12 | 0.5632 + 4.3231 i | 0.0185 + 0.0146 i |
13 | 0.5632 - 4.3231 i | 0.0185 - 0.0146 i |
14 | 7.7334 | 0.0796 i |
Top of the page
Designed by A. Sergeev.