On the nature of the Møller-Plesset critical point

Alexey V. Sergeev and David Z. Goodson
Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747-2300
Steven E. Wheeler and Wesley D. Allen
Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-2525

(Received 2 July 2004; accepted 9 June 2005; published online 16 August 2005)

It has been suggested [F. H. Stillinger, J. Chem. Phys. 112, 9711 (2000)] that the convergence or divergence of Møller-Plesset perturbation theory is determined by a critical point at a negative value of the perturbation parameter z at which an electron cluster dissociates from the nuclei. This conjecture is examined using configuration-interaction computations as a function of z and using a quadratic approximant analysis of the high-order perturbation series. Results are presented for the He, Ne, and Ar atoms and the hydrogen fluoride molecule. The original theoretical analysis used the true Hamiltonian without the approximation of a finite basis set. In practice, the singularity structure depends strongly on the choice of basis set. Standard basis sets cannot model dissociation to an electron cluster, but if the basis includes diffuse functions then it can model another critical point corresponding to complete dissociation of all the valence electrons. This point is farther from the origin of the z plane than is the critical point for the electron cluster, but it is still close enough to cause divergence of the perturbation series. For the hydrogen fluoride molecule a critical point is present even without diffuse functions. The basis functions centered on the H atom are far enough from the F atom to model the escape of electrons away from the fluorine end of the molecule. For the Ar atom a critical point for a one-electron ionization, which was not previously predicted, seems to be present at a positive value of the perturbation parameter. Implications of the existence of critical points for quantum-chemical applications are discussed. ©2005 American Institute of Physics

PACS: 31.15.Md, 31.25.Nj, 34.50.Gb, 51.30.+i, 31.25.Jf      


  1. P. J. Knowles, K. Somasundram, N. C. Handy, and K. Hirao, Chem. Phys. Lett. 113, 87 (1985).
  2. W. D. Laidig, G. Fitzgerald, and R. J. Bartlett, Chem. Phys. Lett. 113, 151 (1985). [Inspec] [ISI] [ChemPort]
  3. O. Christiansen, J. Olsen, P. Jørgensen, H. Koch, and P.-A. Malmqvist, Chem. Phys. Lett. 261, 369 (1996). [Inspec] [ISI] [ChemPort]
  4. J. Olsen, O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996). [ISI] [ChemPort]
  5. M. Leininger, W. D. Allen, H. F. Schaefer, and C. D. Sherrill, J. Chem. Phys. 112, 9213 (2000). [ISI] [ChemPort]
  6. C. Schmidt, M. Warken, and N. C. Handy, Chem. Phys. Lett. 211, 272 (1993). [Inspec] [ISI] [ChemPort]
  7. D. Cremer and Z. He, J. Phys. Chem. 100, 6173 (1996). [ISI] [ChemPort]
  8. B. Forsberg, Z. He, Y. He, and D. Cremer, Int. J. Quantum Chem. 76, 306 (2000). [Inspec] [ISI]
  9. D. Cremer, in Encyclopedia of Computational Chemistry, edited by P. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteigner, P. A. Kollman, H. F. Schaefer, and P. R. Schreiner (Wiley, New York, 1998), pp. 1706-1735.
  10. D. Z. Goodson and A. V. Sergeev, Adv. Quantum Chem. 47 193 (2004).
  11. R.V. Churchill, Complex Variables and Applications (McGraw-Hill, New York, 1960).
  12. C. Hunter and B. Guerrieri, SIAM J. Appl. Math. 39, 248 (1980).
  13. F. H. Stillinger, J. Chem. Phys. 112, 9711 (2000). [ISI] [ChemPort]
  14. F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999), pp. 57-69.
  15. N. C. Handy, M. T. Marron, and H. J. Silverstone, Phys. Rev. 180, 45 (1969). [ISI] [ChemPort]
  16. G. A. Baker, Jr., Rev. Mod. Phys. 43, 479 (1971). [ISI] [ChemPort]
  17. F. H. Stillinger, J. Chem. Phys. 45, 3623 (1966). [ISI] [ChemPort]
  18. E. Brändas and O. Goscinski, Int. J. Quantum Chem., Symp. 6, 59 (1972).
  19. W. P. Reinhardt, Phys. Rev. A 15, 802 (1977). [ISI] [ChemPort]
  20. J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan III, Phys. Rev. A 41, 1247 (1990). [ISI] [MEDLINE] [ChemPort]
  21. A. V. Sergeev and S. Kais, Int. J. Quantum Chem. 75, 533 (1999). [Inspec] [ISI]
  22. J. G. Loeser, J. Chem. Phys. 86, 5635 (1987). [ISI] [ChemPort]
  23. D. D. Frantz and D. R. Herschbach, Chem. Phys. 126, 59 (1988). [Inspec] [ISI]
  24. D. K. Watson and D. Z. Goodson, Phys. Rev. A 51, R5 (1995). [ISI] [MEDLINE] [ChemPort]
  25. P. Serra and S. Kais, Phys. Rev. Lett. 77, 466 (1996). [ISI] [MEDLINE] [ChemPort]
  26. P. Serra and S. Kais, Chem. Phys. Lett. 260, 302 (1996). [Inspec] [ISI] [ChemPort]
  27. P. Serra and S. Kais, Phys. Rev. A 55, 238 (1997). [ISI] [ChemPort]
  28. S.-W. Huang, D. Z. Goodson, M. López-Cabrera, and T. C. Germann, Phys. Rev. A 58, 250 (1998). [ISI] [ChemPort]
  29. Q. Shi, S. Kais, F. Remacle, and R. D. Levine, J. Chem. Phys. 114, 9697 (2001). [ISI] [ChemPort]
  30. E. R. Davidson and S. T. Borden, J. Phys. Chem. 87, 4783 (1983). [Inspec] [ISI] [ChemPort]
  31. P.-O. Löwdin, Rev. Mod. Phys. 35, 496 (1963). [ISI]
  32. J. Cizek and J. Paldus, J. Chem. Phys. 47, 3976 (1967). [ISI] [ChemPort]
  33. J. Paldus and J. Cizek, Chem. Phys. Lett. 3, 1 (1969). [Inspec] [ChemPort]
  34. J. Paldus and J. Cizek, J. Chem. Phys. 52, 2919 (1970). [ISI] [ChemPort]
  35. R. Seeger and J. A. Pople, J. Chem. Phys. 66, 3045 (1977). [ISI] [ChemPort]
  36. W. D. Allen, D. A. Horner, R. L. DeKock, R. B. Remington, and H. F. Schaefer, Chem. Phys. 133, 11 (1989). [Inspec] [ISI] [ChemPort]
  37. J. Olsen, P. Jørgensen, H. Koch, A. Balkova, and R. J. Bartlett, J. Chem. Phys. 105, 5082 (1996). [ISI] [ChemPort]
  38. T. D. Crawford, W. D. Allen, J. F. Stanton, W. D. Allen, and H. F. Schaefer, J. Chem. Phys. 107, 10626 (1997). [ISI] [ChemPort]
  39. D. Z. Goodson and M. Zheng, Chem. Phys. Lett. 365, 396 (2003). [Inspec] [ISI]
  40. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989), pp. 221-229.
  41. C. Domb, Adv. Phys. 19, 339 (1970). [Inspec] [ISI]
  42. A. Katz, Nucl. Phys. 29, 353 (1962).
  43. T. H. Dunning, Jr., J. Chem. Phys. 53, 2823 (1970). [ISI] [ChemPort]
  44. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). [ChemPort]
  45. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). [ChemPort]
  46. T.D. Crawford, C.D. Sherrill, E.F. Valeev et al., PSI 3.2, 2003. The website for information and downloading the code is www.psicode.org.
  47. D. Z. Goodson, J. Chem. Phys. 112, 4901 (2000). [ISI] [ChemPort]
  48. In Ref. 5 the tabulated series coefficients were truncated at six decimal digits. Here we used coefficients with the full precision of the computation (with 12 digits beyond the decimal point).
  49. J. Olsen, P. Jørgensen, T. Helgaker, and O. Christiansen, J. Chem. Phys. 112, 9736 (2000). [ISI] [ChemPort]
  50. See the general discussion of CI diagonalization methods in M. L. Leininger, C. D. Sherrill, W. D. Allen, and H. F. Schaefer, J. Comput. Chem. 22, 1574 (2001). [Inspec] [ISI] [ChemPort]
  51. D. Z. Goodson, J. Chem. Phys. 116, 6948 (2002). [ISI]
  52. D. Z. Goodson, Int. J. Quantum Chem. 92, 35 (2003).
  53. D. Z. Goodson, J. Chem. Phys. 113, 6461 (2000). [ISI] [ChemPort]
  54. B. W. Ninham, J. Math. Phys. 4, 679 (1963). [ISI]
  55. D. Hegarty and M. A. Robb, Mol. Phys. 37, 1455 (1979). [Inspec] [ISI] [ChemPort]
  56. I. Shavitt and L. T. Redmon, J. Chem. Phys. 73, 5711 (1980). [ISI] [ChemPort]
  57. A. Szabados and P. Surjan, Chem. Phys. Lett. 308, 303 (1999). [ISI] [ChemPort]
  58. A. Szabados and P. Surjan, J. Chem. Phys. 112, 4438 (1999). [ISI] [ChemPort]
  59. E. Feenberg, Phys. Rev. 103, 1116 (1956). [ISI]
  60. Z. He and D. Cremer, Int. J. Quantum Chem. 59, 71 (1996). [Inspec] [ISI] [ChemPort]
  61. H. H. H. Homeier, J. Mol. Struct.: THEOCHEM 366, 161 (1996).
  62. A. T. Amos, Int. J. Quantum Chem. 6, 125 (1972).
  63. H.-J. Werner, P.J. Knowles, R. Lindh et al., MOLPRO 2000, 2000. The website for information and downloading the code is www.molpro.net.
  64. MATHEMATICA 5.1, Wolfram Research, Inc., Champaign, IL, 2003.
  65. B. Numerov, Publications de l'Observatoire central astrophysique de Russie 2, 188 (1933).
  66. J. W. Cooley, Math. Comput. 15, 363 (1961).