Singularities of Møller-Plesset series: example "bh aug-cc-pVQZ 1.2r_e"

Molecule X 1^Sigma+ State of BH. Basis AUG-CC-PVQZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5137 + 0.4569 i
0.145 - 0.0388 i
Singularities of quadratic [5, 5, 4] approximant
2
1.5137 - 0.4569 i
0.145 + 0.0388 i
3
1.845
0.264
4
-2.4634
0.0177
5
-2.732
0.019 i
6
3.4296
0.86 i
7
4.5967
3.55
8
-5.7444 + 1.588 i
0.00584 - 0.164 i
9
-5.7444 - 1.588 i
0.00584 + 0.164 i
10
12.7804
0.271 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5156 + 0.4603 i
0.145 - 0.0296 i
Singularities of quadratic [5, 5, 5] approximant
2
1.5156 - 0.4603 i
0.145 + 0.0296 i
3
1.8287
0.256
4
-2.3427
0.0181
5
-2.4711
0.0196 i
6
-3.9792
0.584
7
2.5714 + 4.3529 i
0.059 + 0.125 i
8
2.5714 - 4.3529 i
0.059 - 0.125 i
9
4.2043 + 8.0113 i
0.266 + 0.0667 i
10
4.2043 - 8.0113 i
0.266 - 0.0667 i
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5142 + 0.4673 i
0.135 - 0.0136 i
Singularities of quadratic [6, 5, 5] approximant
2
1.5142 - 0.4673 i
0.135 + 0.0136 i
3
1.7949
0.234
4
-2.3395
0.0113
5
-2.5373
0.0123 i
6
-4.4021
7.41
7
2.2836 + 5.7062 i
0.0368 - 0.0923 i
8
2.2836 - 5.7062 i
0.0368 + 0.0923 i
9
7.4129
7.99 i
10
-1.9156 + 7.1691 i
0.0345 + 0.0661 i
11
-1.9156 - 7.1691 i
0.0345 - 0.0661 i
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5163 + 0.4595 i
0.146 - 0.0318 i
Singularities of quadratic [6, 6, 5] approximant
2
1.5163 - 0.4595 i
0.146 + 0.0318 i
3
1.8337
0.26
4
-2.3846
0.0191
5
-2.5416
0.0205 i
6
2.1615 + 2.7923 i
0.137 + 0.0299 i
7
2.1615 - 2.7923 i
0.137 - 0.0299 i
8
2.4805 + 2.7941 i
0.00763 - 0.171 i
9
2.4805 - 2.7941 i
0.00763 + 0.171 i
10
-4.3795
6.24
11
-10.669
0.169 i
12
29.5266
0.443 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5379 + 0.461 i
0.215 - 0.00987 i
Singularities of quadratic [6, 6, 6] approximant
2
1.5379 - 0.461 i
0.215 + 0.00987 i
3
1.7124 + 0.1935 i
0.176 + 0.279 i
4
1.7124 - 0.1935 i
0.176 - 0.279 i
5
1.7308
0.602
6
-2.3788
0.0214
7
-2.515
0.0229 i
8
-4.1689
1.14
9
4.5738
0.579 i
10
4.4323 + 3.4864 i
0.0943 + 0.27 i
11
4.4323 - 3.4864 i
0.0943 - 0.27 i
12
-24.2879
0.163 i
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.1422
1.2e-9 - 1.2e-9 i
Singularities of quadratic [7, 6, 6] approximant
2
0.1422
1.2e-9 + 1.2e-9 i
3
1.5317 + 0.4524 i
0.213 - 0.0327 i
4
1.5317 - 0.4524 i
0.213 + 0.0327 i
5
2.0532
0.281
6
2.3255
1.04 i
7
-2.3991 + 0.1162 i
0.00567 + 0.00551 i
8
-2.3991 - 0.1162 i
0.00567 - 0.00551 i
9
-3.4695
0.0297
10
3.3669 + 1.152 i
0.493 + 0.273 i
11
3.3669 - 1.152 i
0.493 - 0.273 i
12
-6.5261
12.9 i
13
12.215
0.395
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5135 + 0.4514 i
0.136 - 0.0595 i
Singularities of quadratic [7, 7, 6] approximant
2
1.5135 - 0.4514 i
0.136 + 0.0595 i
3
1.8409
0.282
4
1.9629 + 1.193 i
0.0779 - 0.0712 i
5
1.9629 - 1.193 i
0.0779 + 0.0712 i
6
-2.4107 + 0.0683 i
0.0123 + 0.0132 i
7
-2.4107 - 0.0683 i
0.0123 - 0.0132 i
8
2.0498 + 1.2808 i
0.0672 + 0.0928 i
9
2.0498 - 1.2808 i
0.0672 - 0.0928 i
10
-3.5403
0.05
11
-6.4981
8.01 i
12
8.6105
0.623 i
13
-10.8014 + 10.0159 i
0.225 + 0.0812 i
14
-10.8014 - 10.0159 i
0.225 - 0.0812 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.522 + 0.4196 i
0.0972 - 0.223 i
Singularities of quadratic [7, 7, 7] approximant
2
1.522 - 0.4196 i
0.0972 + 0.223 i
3
1.5785 + 0.0258 i
0.151 - 0.204 i
4
1.5785 - 0.0258 i
0.151 + 0.204 i
5
2.0105 + 0.486 i
0.168 + 0.202 i
6
2.0105 - 0.486 i
0.168 - 0.202 i
7
-2.361 + 0.1324 i
0.00322 + 0.00392 i
8
-2.361 - 0.1324 i
0.00322 - 0.00392 i
9
-2.9734
0.0079
10
3.6714 + 0.7615 i
0.583 + 0.698 i
11
3.6714 - 0.7615 i
0.583 - 0.698 i
12
-4.0896
0.04 i
13
-8.5882
0.112
14
113.6746
0.655
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5083 + 0.4294 i
0.098 - 0.132 i
Singularities of quadratic [8, 7, 7] approximant
2
1.5083 - 0.4294 i
0.098 + 0.132 i
3
1.6971
0.307
4
2.0072
3.09 i
5
1.9148 + 0.6373 i
0.133 + 0.141 i
6
1.9148 - 0.6373 i
0.133 - 0.141 i
7
-2.2753
0.00493
8
2.4419
0.35
9
-2.5617 + 0.2325 i
0.00407 - 0.00104 i
10
-2.5617 - 0.2325 i
0.00407 + 0.00104 i
11
-2.5814
0.00265 i
12
-3.4622
0.021
13
4.1711
3.39 i
14
-6.6218
3.73 i
15
15.9153
0.626
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.507 + 0.4296 i
0.0921 - 0.129 i
Singularities of quadratic [8, 8, 7] approximant
2
1.507 - 0.4296 i
0.0921 + 0.129 i
3
1.7116
0.318
4
1.912 + 0.6546 i
0.114 + 0.141 i
5
1.912 - 0.6546 i
0.114 - 0.141 i
6
2.2059 + 0.0798 i
0.333 + 0.17 i
7
2.2059 - 0.0798 i
0.333 - 0.17 i
8
-2.3777 + 0.0296 i
0.0311 + 0.0226 i
9
-2.3777 - 0.0296 i
0.0311 - 0.0226 i
10
-2.6535 + 0.047 i
0.0189 + 0.024 i
11
-2.6535 - 0.047 i
0.0189 - 0.024 i
12
-3.8024
0.089
13
4.5052
19.5 i
14
-7.3351
1.05 i
15
23.8857
1.3
16
777.4459
14.9 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.735
6.08e-7
Singularities of quadratic [8, 8, 8] approximant
2
-0.735
6.08e-7 i
3
1.5039 + 0.4258 i
0.0586 - 0.127 i
4
1.5039 - 0.4258 i
0.0586 + 0.127 i
5
1.7945
0.52
6
1.8766
1.08 i
7
1.9768 + 0.6632 i
0.0276 + 0.172 i
8
1.9768 - 0.6632 i
0.0276 - 0.172 i
9
-2.2802
0.00382
10
-2.7327
0.00487 i
11
2.901
0.521
12
-3.8772 + 0.6769 i
0.0268 - 0.0181 i
13
-3.8772 - 0.6769 i
0.0268 + 0.0181 i
14
-4.7818
0.78
15
5.8866
0.844 i
16
-11.1703
0.113 i
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.791
8.22e-6
Singularities of quadratic [9, 8, 8] approximant
2
0.791
8.22e-6 i
3
1.4832 + 0.4237 i
0.0171 - 0.0603 i
4
1.4832 - 0.4237 i
0.0171 + 0.0603 i
5
1.7455 + 0.2571 i
2.02 + 0.157 i
6
1.7455 - 0.2571 i
2.02 - 0.157 i
7
-2.2887
0.00428
8
2.2276 + 0.5905 i
0.256 - 0.0177 i
9
2.2276 - 0.5905 i
0.256 + 0.0177 i
10
-2.6682
0.00615 i
11
-0.6432 + 3.4005 i
0.00199 + 0.000709 i
12
-0.6432 - 3.4005 i
0.00199 - 0.000709 i
13
-0.6224 + 3.4523 i
0.000716 - 0.00204 i
14
-0.6224 - 3.4523 i
0.000716 + 0.00204 i
15
-3.8435
1.66
16
-5.0878
0.205 i
17
6.1813
0.198
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.4215 + 0.3742 i
1.76e-8 + 1.18e-8 i
Singularities of quadratic [9, 9, 8] approximant
2
-0.4215 - 0.3742 i
1.76e-8 - 1.18e-8 i
3
-0.4215 + 0.3742 i
1.18e-8 - 1.76e-8 i
4
-0.4215 - 0.3742 i
1.18e-8 + 1.76e-8 i
5
1.412
0.00662
6
1.4588
0.00835 i
7
1.4665 + 0.4791 i
0.0256 + 0.0054 i
8
1.4665 - 0.4791 i
0.0256 - 0.0054 i
9
1.63 + 0.4865 i
0.0922 - 0.0788 i
10
1.63 - 0.4865 i
0.0922 + 0.0788 i
11
2.2023
8.41
12
-2.2776
0.00338
13
-2.6881
0.00667 i
14
2.8426
0.304 i
15
-3.8465
0.307
16
-6.1375
6.11 i
17
11.3
0.238
18
2305.5214
28.6 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2088 + 0.726 i
3.81e-7 + 1.39e-7 i
Singularities of quadratic [9, 9, 9] approximant
2
-0.2088 - 0.726 i
3.81e-7 - 1.39e-7 i
3
-0.2088 + 0.726 i
1.39e-7 - 3.81e-7 i
4
-0.2088 - 0.726 i
1.39e-7 + 3.81e-7 i
5
1.523 + 0.4501 i
0.208 + 0.0613 i
6
1.523 - 0.4501 i
0.208 - 0.0613 i
7
1.6023
0.0888
8
1.775 + 0.6438 i
0.101 - 0.0585 i
9
1.775 - 0.6438 i
0.101 + 0.0585 i
10
2.003 + 0.2747 i
0.194 + 0.383 i
11
2.003 - 0.2747 i
0.194 - 0.383 i
12
-2.2813
0.00372
13
-2.6943
0.006 i
14
3.8835
1.05 i
15
-3.9921
34.
16
-5.1427
0.218 i
17
-12.3524
0.0983
18
493.3292
0.237
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-1.0077 + 0.e-5 i
1.28e-6 + 1.28e-6 i
Singularities of quadratic [10, 9, 9] approximant
2
-1.0077 - 0.e-5 i
1.28e-6 - 1.28e-6 i
3
-0.1001 + 1.3961 i
0.00004 - 1.07e-6 i
4
-0.1001 - 1.3961 i
0.00004 + 1.07e-6 i
5
-0.1001 + 1.3962 i
1.07e-6 + 0.00004 i
6
-0.1001 - 1.3962 i
1.07e-6 - 0.00004 i
7
1.5074 + 0.4358 i
0.113 - 0.0884 i
8
1.5074 - 0.4358 i
0.113 + 0.0884 i
9
1.6463
0.187
10
1.8606 + 0.5664 i
0.367 + 0.0218 i
11
1.8606 - 0.5664 i
0.367 - 0.0218 i
12
1.9768
48.3 i
13
2.231
0.865
14
-2.2847
0.00372
15
-2.6538
0.00747 i
16
3.1345
0.351 i
17
-3.7155
0.132
18
-5.9547
3.48 i
19
10.2818
0.245
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5058 + 0.4259 i
0.0658 - 0.131 i
Singularities of quadratic [10, 10, 9] approximant
2
1.5058 - 0.4259 i
0.0658 + 0.131 i
3
1.7576
0.594
4
-1.78 + 0.001 i
0.000165 + 0.000165 i
5
-1.78 - 0.001 i
0.000165 - 0.000165 i
6
1.8304
2.44 i
7
-0.4739 + 1.7876 i
0.000166 - 0.000206 i
8
-0.4739 - 1.7876 i
0.000166 + 0.000206 i
9
-0.4742 + 1.7878 i
0.000206 + 0.000166 i
10
-0.4742 - 1.7878 i
0.000206 - 0.000166 i
11
1.9844 + 0.6246 i
0.0651 + 0.204 i
12
1.9844 - 0.6246 i
0.0651 - 0.204 i
13
-2.3967 + 0.0651 i
7.13e-6 - 0.0151 i
14
-2.3967 - 0.0651 i
7.13e-6 + 0.0151 i
15
3.0204
0.425
16
-3.2726
0.0151
17
3.8772
1.88 i
18
-5.6415
1.78 i
19
10.2127
0.393
20
447.613
3.34 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.8871
0.0000101
Singularities of quadratic [10, 10, 10] approximant
2
0.8872
0.0000101 i
3
-1.1716 + 0.e-5 i
1.83e-6 + 1.83e-6 i
4
-1.1716 - 0.e-5 i
1.83e-6 - 1.83e-6 i
5
-0.4598 + 1.3874 i
0.0000134 - 0.0000141 i
6
-0.4598 - 1.3874 i
0.0000134 + 0.0000141 i
7
-0.4599 + 1.3874 i
0.0000141 + 0.0000134 i
8
-0.4599 - 1.3874 i
0.0000141 - 0.0000134 i
9
1.5085 + 0.4207 i
0.0313 - 0.174 i
10
1.5085 - 0.4207 i
0.0313 + 0.174 i
11
1.7511
0.376
12
1.9317
1.39 i
13
2.0182 + 0.7189 i
0.0311 - 0.124 i
14
2.0182 - 0.7189 i
0.0311 + 0.124 i
15
-2.2777
0.00302
16
-2.6375
0.0099 i
17
3.3344
2.23
18
-3.6266
0.0516
19
-7.2595
0.658 i
20
8.2943
0.236 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.3732
3.e-10 - 3.e-10 i
Singularities of quadratic [11, 10, 10] approximant
2
0.3732
3.e-10 + 3.e-10 i
3
-0.7873 + 0.e-5 i
3.1e-8 + 3.1e-8 i
4
-0.7873 - 0.e-5 i
3.1e-8 - 3.1e-8 i
5
-0.7168 + 1.3273 i
4.44e-6 - 8.03e-6 i
6
-0.7168 - 1.3273 i
4.44e-6 + 8.03e-6 i
7
-0.7169 + 1.3274 i
8.03e-6 + 4.44e-6 i
8
-0.7169 - 1.3274 i
8.03e-6 - 4.44e-6 i
9
1.5065 + 0.4194 i
0.02 - 0.161 i
10
1.5065 - 0.4194 i
0.02 + 0.161 i
11
1.818 + 0.0688 i
0.835 - 0.115 i
12
1.818 - 0.0688 i
0.835 + 0.115 i
13
2.0666 + 0.7281 i
0.0678 - 0.102 i
14
2.0666 - 0.7281 i
0.0678 + 0.102 i
15
-2.2528
0.00186
16
-2.6391
0.0193 i
17
-3.5981
0.0205
18
4.2614
1.29
19
-4.6451 + 3.7392 i
0.0202 + 0.00304 i
20
-4.6451 - 3.7392 i
0.0202 - 0.00304 i
21
-15.1191
0.0602 i
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2738
0
Singularities of quadratic [11, 11, 10] approximant
2
-0.2738
0
3
-1.0745 + 0.e-5 i
2.22e-7 + 2.22e-7 i
4
-1.0745 - 0.e-5 i
2.22e-7 - 2.22e-7 i
5
-0.6207 + 1.3935 i
3.47e-6 + 7.72e-6 i
6
-0.6207 - 1.3935 i
3.47e-6 - 7.72e-6 i
7
-0.6207 + 1.3937 i
7.73e-6 - 3.47e-6 i
8
-0.6207 - 1.3937 i
7.73e-6 + 3.47e-6 i
9
1.5066 + 0.4208 i
0.0338 - 0.158 i
10
1.5066 - 0.4208 i
0.0338 + 0.158 i
11
1.8099 + 0.0706 i
0.963 - 0.00556 i
12
1.8099 - 0.0706 i
0.963 + 0.00556 i
13
2.052 + 0.7147 i
0.0535 - 0.113 i
14
2.052 - 0.7147 i
0.0535 + 0.113 i
15
-2.2407
0.00123
16
-2.5345
23.2 i
17
-3.2748
0.00639
18
4.2346
1.48
19
-4.617 + 3.8431 i
0.0156 + 0.00161 i
20
-4.617 - 3.8431 i
0.0156 - 0.00161 i
21
-15.5644
0.0504 i
22
557.8223
248. i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.1279
0
Singularities of quadratic [11, 11, 11] approximant
2
0.1279
0
3
-0.4108
1.04e-10 + 1.04e-10 i
4
-0.4108
1.04e-10 - 1.04e-10 i
5
-1.5515
0.0000165
6
-1.552
0.0000165 i
7
1.5069 + 0.4204 i
0.0291 - 0.163 i
8
1.5069 - 0.4204 i
0.0291 + 0.163 i
9
-0.5717 + 1.5165 i
0.0000193 + 4.78e-7 i
10
-0.5717 - 1.5165 i
0.0000193 - 4.78e-7 i
11
-0.572 + 1.5164 i
4.88e-7 - 0.0000193 i
12
-0.572 - 1.5164 i
4.88e-7 + 0.0000193 i
13
1.8208 + 0.0462 i
0.65 - 0.238 i
14
1.8208 - 0.0462 i
0.65 + 0.238 i
15
2.0469 + 0.7178 i
0.0541 - 0.115 i
16
2.0469 - 0.7178 i
0.0541 + 0.115 i
17
-2.3068
0.00699
18
-2.6529
0.00596 i
19
-3.7418
0.206
20
3.7848
65.5
21
-6.2342
110. i
22
11.0968
0.185 i
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.