Singularities of Møller-Plesset series: example "bh aug-cc-pVQZ 1.3r_e"

Molecule X 1^Sigma+ State of BH. Basis AUG-CC-PVQZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4701 + 0.4761 i
0.0982 - 0.0434 i
Singularities of quadratic [5, 5, 4] approximant
2
1.4701 - 0.4761 i
0.0982 + 0.0434 i
3
1.664
0.135
4
2.2602
259. i
5
-2.4089
0.0184
6
-2.6326
0.02 i
7
3.2629
4.14
8
-4.9251
0.544
9
-7.6055
0.123 i
10
12.4709
0.295 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4691 + 0.4799 i
0.0954 - 0.0385 i
Singularities of quadratic [5, 5, 5] approximant
2
1.4691 - 0.4799 i
0.0954 + 0.0385 i
3
1.6531
0.132
4
-2.3614
0.0176
5
2.3776
13.3 i
6
-2.5366
0.019 i
7
3.828
1.02e3
8
-4.2944
30.9
9
8.0152
0.329 i
10
-11.3258
0.143 i
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4832 + 0.4633 i
0.118 - 0.0777 i
Singularities of quadratic [6, 5, 5] approximant
2
1.4832 - 0.4633 i
0.118 + 0.0777 i
3
1.7529
0.191
4
-2.3477
0.145
5
-2.3768
0.172 i
6
2.5782
6.46 i
7
-3.6588
0.2
8
3.6606 + 1.7569 i
0.416 - 0.429 i
9
3.6606 - 1.7569 i
0.416 + 0.429 i
10
-9.122
0.333 i
11
17.8578
1.44
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.49 + 0.4553 i
0.128 - 0.107 i
Singularities of quadratic [6, 6, 5] approximant
2
1.49 - 0.4553 i
0.128 + 0.107 i
3
1.8213
0.229
4
-2.3584
0.0527
5
-2.4267
0.0557 i
6
2.7209 + 1.5545 i
0.194 + 0.31 i
7
2.7209 - 1.5545 i
0.194 - 0.31 i
8
3.2277 + 0.4442 i
0.433 + 0.0792 i
9
3.2277 - 0.4442 i
0.433 - 0.0792 i
10
-3.8526
0.455
11
-8.8754
0.221 i
12
41.3454
0.521 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.511 + 0.4826 i
0.181 - 0.00669 i
Singularities of quadratic [6, 6, 6] approximant
2
1.511 - 0.4826 i
0.181 + 0.00669 i
3
1.6581 + 0.2539 i
0.264 + 0.274 i
4
1.6581 - 0.2539 i
0.264 - 0.274 i
5
1.9846
9.22
6
-2.3282
0.0195
7
-2.4593
0.0209 i
8
2.5718
0.942 i
9
-3.9845
2.48
10
4.9357 + 1.7038 i
0.12 + 0.429 i
11
4.9357 - 1.7038 i
0.12 - 0.429 i
12
-16.2518
0.161 i
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4967 + 0.4414 i
0.106 - 0.172 i
Singularities of quadratic [7, 6, 6] approximant
2
1.4967 - 0.4414 i
0.106 + 0.172 i
3
1.9022
0.338
4
1.9543 + 0.6658 i
0.184 + 0.231 i
5
1.9543 - 0.6658 i
0.184 - 0.231 i
6
-2.3691 + 0.0467 i
0.0203 + 0.0209 i
7
-2.3691 - 0.0467 i
0.0203 - 0.0209 i
8
2.2623 + 0.7576 i
0.412 + 0.0231 i
9
2.2623 - 0.7576 i
0.412 - 0.0231 i
10
-3.5839
0.114
11
5.7119
4.34 i
12
-7.4516
0.556 i
13
27.3161
1.67
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5043 + 0.4552 i
0.187 - 0.114 i
Singularities of quadratic [7, 7, 6] approximant
2
1.5043 - 0.4552 i
0.187 + 0.114 i
3
1.9971 + 0.238 i
0.31 - 0.0124 i
4
1.9971 - 0.238 i
0.31 + 0.0124 i
5
-2.2792
0.00716
6
-2.5651
0.00669 i
7
2.5083 + 0.9743 i
0.311 - 0.282 i
8
2.5083 - 0.9743 i
0.311 + 0.282 i
9
-3.3994 + 0.9212 i
0.0226 - 0.00537 i
10
-3.3994 - 0.9212 i
0.0226 + 0.00537 i
11
3.5967
1.22
12
-4.6633 + 0.5845 i
0.0772 - 0.119 i
13
-4.6633 - 0.5845 i
0.0772 + 0.119 i
14
30.2916
0.383 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5213 + 0.4172 i
0.178 + 0.422 i
Singularities of quadratic [7, 7, 7] approximant
2
1.5213 - 0.4172 i
0.178 - 0.422 i
3
1.6821 + 0.1244 i
0.195 - 0.155 i
4
1.6821 - 0.1244 i
0.195 + 0.155 i
5
1.7442 + 0.425 i
0.206 + 0.154 i
6
1.7442 - 0.425 i
0.206 - 0.154 i
7
-2.3476 + 0.0901 i
0.00666 + 0.00692 i
8
-2.3476 - 0.0901 i
0.00666 - 0.00692 i
9
-3.2685
0.0292
10
3.3116 + 0.8317 i
0.513 + 0.258 i
11
3.3116 - 0.8317 i
0.513 - 0.258 i
12
-5.1815
1.57 i
13
-14.196
0.285
14
14.4528
1.09
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4998 + 0.4426 i
0.12 - 0.177 i
Singularities of quadratic [8, 7, 7] approximant
2
1.4998 - 0.4426 i
0.12 + 0.177 i
3
1.9895
0.359
4
1.9698 + 0.581 i
0.29 + 0.301 i
5
1.9698 - 0.581 i
0.29 - 0.301 i
6
-2.2719 + 0.095 i
0.00138 + 0.00382 i
7
-2.2719 - 0.095 i
0.00138 - 0.00382 i
8
-2.384
0.0031
9
2.3386 + 0.5487 i
0.578 + 0.294 i
10
2.3386 - 0.5487 i
0.578 - 0.294 i
11
-2.6786
0.00969 i
12
-3.9644
2.22
13
5.5305
3.02 i
14
-9.086
0.302 i
15
27.9509
3.02
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4994 + 0.4434 i
0.121 - 0.171 i
Singularities of quadratic [8, 8, 7] approximant
2
1.4994 - 0.4434 i
0.121 + 0.171 i
3
2.0102
0.35
4
2.0016 + 0.5888 i
0.323 + 0.375 i
5
2.0016 - 0.5888 i
0.323 - 0.375 i
6
-2.2935 + 0.1175 i
0.00221 + 0.00375 i
7
-2.2935 - 0.1175 i
0.00221 - 0.00375 i
8
2.3354 + 0.5731 i
0.637 + 0.427 i
9
2.3354 - 0.5731 i
0.637 - 0.427 i
10
-2.5773
0.00408
11
-2.9881
0.0106 i
12
-4.5298
0.575
13
6.6869
0.803 i
14
-13.6776
0.354 i
15
-16.0196 + 24.4271 i
0.433 + 0.602 i
16
-16.0196 - 24.4271 i
0.433 - 0.602 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5009 + 0.4463 i
0.151 - 0.16 i
Singularities of quadratic [8, 8, 8] approximant
2
1.5009 - 0.4463 i
0.151 + 0.16 i
3
1.8721
0.3
4
1.9441 + 0.6376 i
0.277 + 0.0755 i
5
1.9441 - 0.6376 i
0.277 - 0.0755 i
6
2.1192 + 0.8028 i
0.142 - 0.301 i
7
2.1192 - 0.8028 i
0.142 + 0.301 i
8
-2.3452
0.234
9
-2.3591
0.977 i
10
-2.8064
0.0314
11
-2.9395
0.0333 i
12
3.0786
0.687 i
13
-4.1132
10.4
14
4.9258
0.649
15
7.8108
0.25 i
16
-12.324
0.161 i
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5036 + 0.448 i
0.189 - 0.154 i
Singularities of quadratic [9, 8, 8] approximant
2
1.5036 - 0.448 i
0.189 + 0.154 i
3
1.8211
0.26
4
1.9078 + 0.6634 i
0.178 + 0.0238 i
5
1.9078 - 0.6634 i
0.178 - 0.0238 i
6
2.0929 + 0.8646 i
0.0655 - 0.143 i
7
2.0929 - 0.8646 i
0.0655 + 0.143 i
8
-2.2645
0.00598
9
-2.558
0.00613 i
10
3.1886
0.477 i
11
-3.6881 + 0.5177 i
0.0308 - 0.024 i
12
-3.6881 - 0.5177 i
0.0308 + 0.024 i
13
-6.568 + 1.6409 i
0.0149 + 0.0335 i
14
-6.568 - 1.6409 i
0.0149 - 0.0335 i
15
-4.4815 + 5.0795 i
0.0246 - 0.0204 i
16
-4.4815 - 5.0795 i
0.0246 + 0.0204 i
17
8.2576
0.174
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4989 + 0.4435 i
0.116 - 0.168 i
Singularities of quadratic [9, 9, 8] approximant
2
1.4989 - 0.4435 i
0.116 + 0.168 i
3
-2.0415 + 0.0023 i
0.000433 + 0.000438 i
4
-2.0415 - 0.0023 i
0.000433 - 0.000438 i
5
2.0663
0.336
6
2.0295 + 0.5952 i
0.336 + 0.527 i
7
2.0295 - 0.5952 i
0.336 - 0.527 i
8
-2.2602
0.00389
9
2.3298 + 0.5144 i
0.45 + 0.729 i
10
2.3298 - 0.5144 i
0.45 - 0.729 i
11
-2.5104
0.0123 i
12
-3.5029
0.087
13
-5.5198
25.6 i
14
-1.2247 + 7.7161 i
0.0829 - 0.019 i
15
-1.2247 - 7.7161 i
0.0829 + 0.019 i
16
10.1255
0.254 i
17
-4.3702 + 9.4976 i
0.00401 + 0.115 i
18
-4.3702 - 9.4976 i
0.00401 - 0.115 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4928 + 0.4396 i
0.0594 - 0.146 i
Singularities of quadratic [9, 9, 9] approximant
2
1.4928 - 0.4396 i
0.0594 + 0.146 i
3
0.4078 + 1.6156 i
0.000184 + 0.00023 i
4
0.4078 - 1.6156 i
0.000184 - 0.00023 i
5
0.4079 + 1.6158 i
0.00023 - 0.000184 i
6
0.4079 - 1.6158 i
0.00023 + 0.000184 i
7
1.8548 + 0.3423 i
0.951 + 0.151 i
8
1.8548 - 0.3423 i
0.951 - 0.151 i
9
2.0441 + 0.6157 i
0.33 - 0.257 i
10
2.0441 - 0.6157 i
0.33 + 0.257 i
11
-2.1817
0.000929
12
-2.1845 + 0.0938 i
0.0000171 - 0.00133 i
13
-2.1845 - 0.0938 i
0.0000171 + 0.00133 i
14
-2.6658
0.008 i
15
3.591
75.8
16
-3.9212
1.25
17
-9.6677
0.204 i
18
9.819
0.241 i
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.4929
1.95e-8
Singularities of quadratic [10, 9, 9] approximant
2
-0.4929
1.95e-8 i
3
1.4976 + 0.4435 i
0.108 - 0.158 i
4
1.4976 - 0.4435 i
0.108 + 0.158 i
5
2.0877
0.371
6
2.017 + 0.5599 i
0.592 + 0.429 i
7
2.017 - 0.5599 i
0.592 - 0.429 i
8
-2.2463
0.00398
9
2.2387 + 0.5589 i
1.37 + 0.781 i
10
2.2387 - 0.5589 i
1.37 - 0.781 i
11
-1.2327 + 2.2172 i
0.000863 + 0.00016 i
12
-1.2327 - 2.2172 i
0.000863 - 0.00016 i
13
-1.23 + 2.2212 i
0.000159 - 0.000867 i
14
-1.23 - 2.2212 i
0.000159 + 0.000867 i
15
-2.6088
0.00609 i
16
-4.0356
8.39
17
5.2407
23.9 i
18
-6.9635
3.7 i
19
17.4924
0.549
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2188 + 0.1746 i
-1.22e-10 i
Singularities of quadratic [10, 10, 9] approximant
2
-0.2188 - 0.1746 i
1.22e-10 i
3
-0.2188 + 0.1746 i
1.22e-10
4
-0.2188 - 0.1746 i
1.22e-10
5
1.4971 + 0.4417 i
0.0916 - 0.167 i
6
1.4971 - 0.4417 i
0.0916 + 0.167 i
7
1.9696 + 0.3151 i
0.63 - 0.0686 i
8
1.9696 - 0.3151 i
0.63 + 0.0686 i
9
2.0616 + 0.631 i
0.324 - 0.466 i
10
2.0616 - 0.631 i
0.324 + 0.466 i
11
-2.2544
0.00459
12
-2.573
0.00679 i
13
3.2794
19.3
14
-3.809
3.24
15
-0.1731 + 4.7676 i
0.0116 - 0.00516 i
16
-0.1731 - 4.7676 i
0.0116 + 0.00516 i
17
0.0787 + 5.1743 i
0.00606 + 0.013 i
18
0.0787 - 5.1743 i
0.00606 - 0.013 i
19
-5.6933
3.77 i
20
55.3587
0.483 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.504 + 0.7626 i
1.62e-6 - 1.61e-6 i
Singularities of quadratic [10, 10, 10] approximant
2
-0.504 - 0.7626 i
1.62e-6 + 1.61e-6 i
3
-0.504 + 0.7626 i
1.61e-6 + 1.62e-6 i
4
-0.504 - 0.7626 i
1.61e-6 - 1.62e-6 i
5
1.4999 + 0.4461 i
0.141 - 0.154 i
6
1.4999 - 0.4461 i
0.141 + 0.154 i
7
1.8798
0.316
8
-1.9834
0.000322
9
-2.0051
0.000307 i
10
1.9324 + 0.613 i
0.304 + 0.0496 i
11
1.9324 - 0.613 i
0.304 - 0.0496 i
12
-2.1721
0.000979
13
2.1222 + 0.7807 i
0.0957 - 0.316 i
14
2.1222 - 0.7807 i
0.0957 + 0.316 i
15
-2.6869
0.00706 i
16
3.0913
0.619 i
17
-4.0142
6.57
18
5.2242
0.433
19
10.0704
0.218 i
20
-10.1889
0.202 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2879
0
Singularities of quadratic [11, 10, 10] approximant
2
-0.2879
0
3
-0.5388 + 0.8046 i
8.12e-7 + 4.2e-7 i
4
-0.5388 - 0.8046 i
8.12e-7 - 4.2e-7 i
5
-0.5388 + 0.8046 i
4.2e-7 - 8.12e-7 i
6
-0.5388 - 0.8046 i
4.2e-7 + 8.12e-7 i
7
1.4995 + 0.4469 i
0.142 - 0.141 i
8
1.4995 - 0.4469 i
0.142 + 0.141 i
9
-1.8118
0.00693
10
-1.8121
0.00621 i
11
1.8784
0.33
12
1.9112 + 0.6088 i
0.255 + 0.0372 i
13
1.9112 - 0.6088 i
0.255 - 0.0372 i
14
-2.213
0.00239
15
2.165 + 0.8013 i
0.132 - 0.183 i
16
2.165 - 0.8013 i
0.132 + 0.183 i
17
-2.7153
0.00524 i
18
3.7445
0.796 i
19
-4.3215
0.61
20
-7.2356
4.26 i
21
12.4542
0.279
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5841 + 0.6278 i
5.94e-8 - 4.39e-7 i
Singularities of quadratic [11, 11, 10] approximant
2
-0.5841 - 0.6278 i
5.94e-8 + 4.39e-7 i
3
-0.5841 + 0.6278 i
4.39e-7 + 5.94e-8 i
4
-0.5841 - 0.6278 i
4.39e-7 - 5.94e-8 i
5
1.4996 + 0.4477 i
0.146 - 0.136 i
6
1.4996 - 0.4477 i
0.146 + 0.136 i
7
1.8509
0.307
8
1.8874 + 0.6114 i
0.237 - 0.023 i
9
1.8874 - 0.6114 i
0.237 + 0.023 i
10
-1.5219 + 1.4877 i
0.000106 - 0.000121 i
11
-1.5219 - 1.4877 i
0.000106 + 0.000121 i
12
-1.5248 + 1.4882 i
0.000121 + 0.000106 i
13
-1.5248 - 1.4882 i
0.000121 - 0.000106 i
14
2.1011 + 0.8029 i
0.0331 - 0.183 i
15
2.1011 - 0.8029 i
0.0331 + 0.183 i
16
-2.2534
0.00499
17
-2.6233
0.00509 i
18
3.1541
0.47 i
19
-4.3418
0.301
20
-5.9694
1.47 i
21
8.5428
0.196
22
1356.8108
8.37 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.48 + 0.6247 i
3.69e-8 + 3.e-8 i
Singularities of quadratic [11, 11, 11] approximant
2
-0.48 - 0.6247 i
3.69e-8 - 3.e-8 i
3
-0.48 + 0.6247 i
3.e-8 - 3.69e-8 i
4
-0.48 - 0.6247 i
3.e-8 + 3.69e-8 i
5
-0.0959 + 1.0169 i
3.07e-7 + 3.54e-7 i
6
-0.0959 - 1.0169 i
3.07e-7 - 3.54e-7 i
7
-0.0959 + 1.0169 i
3.54e-7 - 3.07e-7 i
8
-0.0959 - 1.0169 i
3.54e-7 + 3.07e-7 i
9
1.499 + 0.4484 i
0.145 - 0.12 i
10
1.499 - 0.4484 i
0.145 + 0.12 i
11
1.8904
0.362
12
1.891 + 0.6092 i
0.215 + 0.048 i
13
1.891 - 0.6092 i
0.215 - 0.048 i
14
-2.1627 + 0.1457 i
0.000316 + 0.000433 i
15
-2.1627 - 0.1457 i
0.000316 - 0.000433 i
16
-2.2112
0.000473
17
2.2585 + 0.7781 i
0.201 - 0.0705 i
18
2.2585 - 0.7781 i
0.201 + 0.0705 i
19
-2.5204
13.3 i
20
-3.6234
0.0518
21
4.9325
44.5 i
22
-16.0381
0.118 i
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.