Singularities of Møller-Plesset series: example "bh aug-cc-pVQZ 1.4r_e"

Molecule X 1^Sigma+ State of BH. Basis AUG-CC-PVQZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.5007
0.0535
Singularities of quadratic [5, 5, 4] approximant
2
1.4295 + 0.4749 i
0.0562 - 0.0517 i
3
1.4295 - 0.4749 i
0.0562 + 0.0517 i
4
1.6995
0.131 i
5
-2.3741
0.0183
6
-2.568
0.0201 i
7
3.007
1.62
8
-4.262
1.39
9
-8.999
0.13 i
10
11.1316
0.305 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4935
0.0522
Singularities of quadratic [5, 5, 5] approximant
2
1.4267 + 0.477 i
0.0543 - 0.049 i
3
1.4267 - 0.477 i
0.0543 + 0.049 i
4
1.7067
0.138 i
5
-2.3349
0.0171
6
-2.4984
0.0185 i
7
3.115
2.14
8
-4.063
5.27
9
9.5164
0.322 i
10
-10.4906
0.139 i
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4537 + 0.4703 i
0.0827 - 0.0812 i
Singularities of quadratic [6, 5, 5] approximant
2
1.4537 - 0.4703 i
0.0827 + 0.0812 i
3
1.6178
0.106
4
1.8912
0.422 i
5
-2.2583
0.0649
6
-2.2941
0.0708 i
7
-3.4485
0.235
8
3.9819 + 0.8356 i
0.869 - 1.84 i
9
3.9819 - 0.8356 i
0.869 + 1.84 i
10
-8.3667
0.309 i
11
30.8806
3.55
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.475 + 0.4637 i
0.118 - 0.129 i
Singularities of quadratic [6, 6, 5] approximant
2
1.475 - 0.4637 i
0.118 + 0.129 i
3
1.7808
0.176
4
2.142
1.02 i
5
-2.2944
0.031
6
-2.3724
0.0324 i
7
2.526 + 1.0785 i
0.494 + 0.0535 i
8
2.526 - 1.0785 i
0.494 - 0.0535 i
9
3.0314
1.39
10
-3.6748
0.924
11
-8.9382
0.181 i
12
22.061
0.35 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4828 + 0.4691 i
0.153 - 0.118 i
Singularities of quadratic [6, 6, 6] approximant
2
1.4828 - 0.4691 i
0.153 + 0.118 i
3
1.8893 + 0.1771 i
0.239 - 0.0557 i
4
1.8893 - 0.1771 i
0.239 + 0.0557 i
5
-2.2857
0.0228
6
-2.3815
0.0239 i
7
2.335 + 0.7474 i
0.52 - 0.759 i
8
2.335 - 0.7474 i
0.52 + 0.759 i
9
2.7825
49.3
10
-3.7264
2.
11
-10.5214
0.162 i
12
12.158
0.298 i
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4834 + 0.4711 i
0.157 - 0.109 i
Singularities of quadratic [7, 6, 6] approximant
2
1.4834 - 0.4711 i
0.157 + 0.109 i
3
1.8575 + 0.1959 i
0.246 - 0.0429 i
4
1.8575 - 0.1959 i
0.246 + 0.0429 i
5
-2.2846
0.0211
6
-2.3859
0.0223 i
7
2.3123 + 0.7075 i
0.351 - 0.892 i
8
2.3123 - 0.7075 i
0.351 + 0.892 i
9
2.9155
143.
10
-3.7515
2.99
11
-11.2175
0.154 i
12
11.9218
0.283 i
13
-501.2415
1.7
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4834 + 0.4711 i
0.157 - 0.109 i
Singularities of quadratic [7, 7, 6] approximant
2
1.4834 - 0.4711 i
0.157 + 0.109 i
3
1.8562 + 0.199 i
0.248 - 0.0417 i
4
1.8562 - 0.199 i
0.248 + 0.0417 i
5
-2.2851
0.0217
6
-2.3847
0.0228 i
7
2.307 + 0.6957 i
0.344 - 0.95 i
8
2.307 - 0.6957 i
0.344 + 0.95 i
9
2.9137
71.2
10
-3.7425
2.55
11
-10.6947
0.16 i
12
10.817
0.299 i
13
76.9952
0.904
14
88.0075
0.745 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.3242
1.26e-7 + 1.26e-7 i
Singularities of quadratic [7, 7, 7] approximant
2
-0.3242
1.26e-7 - 1.26e-7 i
3
1.4835 + 0.4687 i
0.152 - 0.123 i
4
1.4835 - 0.4687 i
0.152 + 0.123 i
5
1.8854 + 0.2162 i
0.265 - 0.0446 i
6
1.8854 - 0.2162 i
0.265 + 0.0446 i
7
-2.2807
0.0181
8
2.2719 + 0.6711 i
0.423 - 1.3 i
9
2.2719 - 0.6711 i
0.423 + 1.3 i
10
-2.3933
0.0193 i
11
2.737
5.81
12
-3.7768
5.38
13
10.4475
0.305 i
14
-11.5343
0.158 i
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4865 + 0.457 i
0.116 - 0.198 i
Singularities of quadratic [8, 7, 7] approximant
2
1.4865 - 0.457 i
0.116 + 0.198 i
3
1.8772 + 0.4725 i
0.445 + 0.149 i
4
1.8772 - 0.4725 i
0.445 - 0.149 i
5
2.0799 + 0.3935 i
0.804 - 1.16 i
6
2.0799 - 0.3935 i
0.804 + 1.16 i
7
-2.2231 + 0.1064 i
0.000953 + 0.0027 i
8
-2.2231 - 0.1064 i
0.000953 - 0.0027 i
9
-2.3447
0.00219
10
2.3606
0.407
11
-2.6903
0.00717 i
12
-4.2299
0.506
13
6.1024
1.03 i
14
-13.631
0.221 i
15
46.8327
2.e3
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4857 + 0.4585 i
0.123 - 0.186 i
Singularities of quadratic [8, 8, 7] approximant
2
1.4857 - 0.4585 i
0.123 + 0.186 i
3
1.9187 + 0.4587 i
0.494 + 0.0772 i
4
1.9187 - 0.4587 i
0.494 - 0.0772 i
5
2.1423 + 0.4541 i
0.106 - 1.7 i
6
2.1423 - 0.4541 i
0.106 + 1.7 i
7
2.2172
0.365
8
-2.2916 + 0.0881 i
0.00456 + 0.0055 i
9
-2.2916 - 0.0881 i
0.00456 - 0.0055 i
10
-2.853
0.0109
11
-3.3708
0.0282 i
12
-5.3715
0.132
13
7.4927
0.494 i
14
-7.81 + 12.118 i
0.209 + 0.159 i
15
-7.81 - 12.118 i
0.209 - 0.159 i
16
-18.9833
249. i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.481 + 0.4662 i
0.137 - 0.109 i
Singularities of quadratic [8, 8, 8] approximant
2
1.481 - 0.4662 i
0.137 + 0.109 i
3
1.6792
0.107
4
1.7645
0.167 i
5
1.813 + 0.5794 i
0.201 - 0.401 i
6
1.813 - 0.5794 i
0.201 + 0.401 i
7
1.864 + 0.7096 i
0.348 - 0.0307 i
8
1.864 - 0.7096 i
0.348 + 0.0307 i
9
-2.2921 + 0.0708 i
0.00545 + 0.00792 i
10
-2.2921 - 0.0708 i
0.00545 - 0.00792 i
11
-2.6716
0.00884
12
-2.9159
0.0142 i
13
3.2391
3.39
14
-4.2934
0.453
15
6.6232
0.468 i
16
-19.9151
0.177 i
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4811 + 0.4613 i
0.119 - 0.143 i
Singularities of quadratic [9, 8, 8] approximant
2
1.4811 - 0.4613 i
0.119 + 0.143 i
3
1.7532 + 0.0081 i
0.059 - 0.0537 i
4
1.7532 - 0.0081 i
0.059 + 0.0537 i
5
1.8618 + 0.5553 i
0.886 - 0.649 i
6
1.8618 - 0.5553 i
0.886 + 0.649 i
7
1.8819 + 0.6416 i
0.633 - 0.942 i
8
1.8819 - 0.6416 i
0.633 + 0.942 i
9
-2.2738 + 0.0946 i
0.00301 + 0.00467 i
10
-2.2738 - 0.0946 i
0.00301 - 0.00467 i
11
-2.5863
0.00533
12
-2.8837
0.0109 i
13
2.9122
1.
14
-4.3536
0.358
15
5.9387
0.934 i
16
-15.393
0.215 i
17
54.9581
35.6
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.1462
0
Singularities of quadratic [9, 9, 8] approximant
2
-0.1462
0
3
1.4773 + 0.4534 i
0.0455 - 0.151 i
4
1.4773 - 0.4534 i
0.0455 + 0.151 i
5
1.7943 + 0.3755 i
1.08 + 0.163 i
6
1.7943 - 0.3755 i
1.08 - 0.163 i
7
1.8868 + 0.5906 i
0.138 - 0.382 i
8
1.8868 - 0.5906 i
0.138 + 0.382 i
9
-2.2246
0.0048
10
-2.5002
0.00606 i
11
3.2792
15.3
12
-4.2674 + 0.3253 i
0.0861 + 0.114 i
13
-4.2674 - 0.3253 i
0.0861 - 0.114 i
14
-2.6657 + 6.0513 i
0.0157 + 0.027 i
15
-2.6657 - 6.0513 i
0.0157 - 0.027 i
16
-6.0927 + 5.3218 i
0.0409 + 0.000987 i
17
-6.0927 - 5.3218 i
0.0409 - 0.000987 i
18
20.1449
0.19 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2776
2.85e-10 + 2.85e-10 i
Singularities of quadratic [9, 9, 9] approximant
2
-0.2776
2.85e-10 - 2.85e-10 i
3
0.8518
0.0000215
4
0.8518
0.0000215 i
5
1.4667 + 0.4552 i
0.0357 - 0.0937 i
6
1.4667 - 0.4552 i
0.0357 + 0.0937 i
7
1.7321 + 0.43 i
3.54 - 3.53 i
8
1.7321 - 0.43 i
3.54 + 3.53 i
9
1.8371 + 0.6154 i
0.151 - 0.238 i
10
1.8371 - 0.6154 i
0.151 + 0.238 i
11
-2.2048 + 0.1259 i
0.000792 + 0.0019 i
12
-2.2048 - 0.1259 i
0.000792 - 0.0019 i
13
-2.3316
0.00167
14
-2.7434
0.0071 i
15
3.2304
4.99
16
-4.2692
0.451
17
7.3814
0.357 i
18
-16.8835
0.175 i
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.226 + 1.2281 i
8.26e-6 + 0.0000473 i
Singularities of quadratic [10, 9, 9] approximant
2
0.226 - 1.2281 i
8.26e-6 - 0.0000473 i
3
0.226 + 1.2281 i
0.0000473 - 8.26e-6 i
4
0.226 - 1.2281 i
0.0000473 + 8.26e-6 i
5
1.48 + 0.4563 i
0.0727 - 0.157 i
6
1.48 - 0.4563 i
0.0727 + 0.157 i
7
1.8487 + 0.397 i
0.686 + 0.0571 i
8
1.8487 - 0.397 i
0.686 - 0.0571 i
9
-1.9239
0.000267
10
-1.9415
0.000256 i
11
1.9489 + 0.5631 i
0.511 - 1.21 i
12
1.9489 - 0.5631 i
0.511 + 1.21 i
13
-2.1328
0.000894
14
2.6715
0.889
15
-2.6827
0.00531 i
16
-4.4687
0.242
17
5.886
1.73 i
18
-10.4731
0.388 i
19
25.6679
1.87
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.8036 + 0.594 i
1.01e-6 + 2.38e-6 i
Singularities of quadratic [10, 10, 9] approximant
2
-0.8036 - 0.594 i
1.01e-6 - 2.38e-6 i
3
-0.8036 + 0.594 i
2.38e-6 - 1.01e-6 i
4
-0.8036 - 0.594 i
2.38e-6 + 1.01e-6 i
5
1.4841 + 0.4573 i
0.103 - 0.189 i
6
1.4841 - 0.4573 i
0.103 + 0.189 i
7
1.8994 + 0.3188 i
0.488 + 0.00344 i
8
1.8994 - 0.3188 i
0.488 - 0.00344 i
9
1.9749 + 0.5669 i
0.0144 - 0.89 i
10
1.9749 - 0.5669 i
0.0144 + 0.89 i
11
-2.2079
0.00335
12
-2.5476
0.00556 i
13
3.1177
9.82
14
1.4705 + 3.2756 i
0.00887 - 0.00908 i
15
1.4705 - 3.2756 i
0.00887 + 0.00908 i
16
1.3921 + 3.412 i
0.00835 + 0.00926 i
17
1.3921 - 3.412 i
0.00835 - 0.00926 i
18
-4.1502
0.496
19
-7.8818
0.598 i
20
46.112
0.465 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.6268 + 0.7822 i
2.33e-6 + 5.28e-6 i
Singularities of quadratic [10, 10, 10] approximant
2
-0.6268 - 0.7822 i
2.33e-6 - 5.28e-6 i
3
-0.6268 + 0.7822 i
5.28e-6 - 2.33e-6 i
4
-0.6268 - 0.7822 i
5.28e-6 + 2.33e-6 i
5
1.4844 + 0.4592 i
0.12 - 0.178 i
6
1.4844 - 0.4592 i
0.12 + 0.178 i
7
2.0186 + 0.3195 i
0.37 - 0.0948 i
8
2.0186 - 0.3195 i
0.37 + 0.0948 i
9
2.048 + 0.5856 i
0.759 + 2.87 i
10
2.048 - 0.5856 i
0.759 - 2.87 i
11
-2.2291
0.00521
12
-2.4811
0.00682 i
13
2.5745
1.05
14
3.7558
0.808 i
15
-3.7756
1.44
16
-4.1356
0.225 i
17
3.9539 + 2.2145 i
0.209 - 0.176 i
18
3.9539 - 2.2145 i
0.209 + 0.176 i
19
-5.4157
0.143
20
99.4674
0.742
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7754 + 0.8509 i
4.66e-6 + 1.88e-6 i
Singularities of quadratic [11, 10, 10] approximant
2
-0.7754 - 0.8509 i
4.66e-6 - 1.88e-6 i
3
-0.7754 + 0.8509 i
1.88e-6 - 4.66e-6 i
4
-0.7754 - 0.8509 i
1.88e-6 + 4.66e-6 i
5
1.4823 + 0.4609 i
0.113 - 0.147 i
6
1.4823 - 0.4609 i
0.113 + 0.147 i
7
1.9473
0.372
8
1.8936 + 0.4697 i
0.389 - 0.0474 i
9
1.8936 - 0.4697 i
0.389 + 0.0474 i
10
2.0663 + 0.746 i
0.0212 + 0.421 i
11
2.0663 - 0.746 i
0.0212 - 0.421 i
12
-2.2
0.00322
13
-2.657
0.00387 i
14
-1.977 + 1.8416 i
0.000388 - 0.000528 i
15
-1.977 - 1.8416 i
0.000388 + 0.000528 i
16
-2.0161 + 1.8271 i
0.00052 + 0.000408 i
17
-2.0161 - 1.8271 i
0.00052 - 0.000408 i
18
3.6109
0.686 i
19
-4.834 + 2.1636 i
0.0171 - 0.0327 i
20
-4.834 - 2.1636 i
0.0171 + 0.0327 i
21
9.4755
0.17
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2446
0
Singularities of quadratic [11, 11, 10] approximant
2
-0.2446
0
3
-0.6427 + 0.8023 i
1.96e-6 + 1.14e-7 i
4
-0.6427 - 0.8023 i
1.96e-6 - 1.14e-7 i
5
-0.6427 + 0.8023 i
1.14e-7 - 1.96e-6 i
6
-0.6427 - 0.8023 i
1.14e-7 + 1.96e-6 i
7
1.4824 + 0.4605 i
0.112 - 0.15 i
8
1.4824 - 0.4605 i
0.112 + 0.15 i
9
1.9008 + 0.4635 i
0.433 - 0.0111 i
10
1.9008 - 0.4635 i
0.433 + 0.0111 i
11
2.0273
0.4
12
-2.2232
0.00435
13
2.1271 + 0.6841 i
0.452 - 0.672 i
14
2.1271 - 0.6841 i
0.452 + 0.672 i
15
-2.4862
0.0074 i
16
-3.6943
1.57
17
5.5705
17.3 i
18
-7.7875
0.147 i
19
-3.5264 + 8.2157 i
0.078 + 0.00143 i
20
-3.5264 - 8.2157 i
0.078 - 0.00143 i
21
1.1833 + 9.2867 i
0.0489 + 0.0977 i
22
1.1833 - 9.2867 i
0.0489 - 0.0977 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.6614
1.87e-8
Singularities of quadratic [11, 11, 11] approximant
2
-0.6614
1.87e-8 i
3
-0.5094 + 0.9026 i
7.88e-7 - 9.67e-7 i
4
-0.5094 - 0.9026 i
7.88e-7 + 9.67e-7 i
5
-0.5094 + 0.9026 i
9.67e-7 + 7.88e-7 i
6
-0.5094 - 0.9026 i
9.67e-7 - 7.88e-7 i
7
1.4952 + 0.4632 i
0.381 - 0.196 i
8
1.4952 - 0.4632 i
0.381 + 0.196 i
9
1.6911 + 0.0614 i
0.0972 - 0.0479 i
10
1.6911 - 0.0614 i
0.0972 + 0.0479 i
11
1.8215 + 0.6949 i
0.0896 + 0.0584 i
12
1.8215 - 0.6949 i
0.0896 - 0.0584 i
13
-2.2372 + 0.1387 i
0.00173 + 0.00127 i
14
-2.2372 - 0.1387 i
0.00173 - 0.00127 i
15
2.2449
0.685
16
2.0833 + 0.8586 i
0.102 - 0.00997 i
17
2.0833 - 0.8586 i
0.102 + 0.00997 i
18
-2.4708
0.00408
19
-2.6853
0.0207 i
20
-3.9922
21.9
21
4.2347
4.6 i
22
-44.3779
0.199 i
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.