Record 1 of 100
Author(s): Delone NB; Krainov VP
Title: AC-Stark shift of atomic levels
Source: USPEKHI FIZICHESKIKH NAUK 1999, Vol 169, Iss 7, pp 753-772
No. cited references: 79
Addresses: Delone NB, Russian Acad Sci, Inst Gen Phys, 38 Vavilov St, Moscow 117942, Russia.
Russian Acad Sci, Inst Gen Phys, Moscow 117942, Russia.
Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia.
KeywordsPlus: FREQUENCY LASER FIELDS; MULTIPHOTON IONIZATION; DYNAMIC POLARIZABILITY; PHOTODETACHMENT THRESHOLD; ELECTROMAGNETIC-FIELD; TUNNELING IONIZATION; PERTURBATION-SERIES; HIGH-INTENSITY; RADIATION; HYDROGEN
Abstract: Calculated and experimental data on the AC-Stark shift of atomic levels in an external, subatomic-strength alternating field are considered. Theoretical predictions concerning the perturbation of atomic spectra by fields of atomic and superatomic strength are discussed. The limiting value of the atomic Stark shift in a light-frequency radiation field is estimated.
Cited references: AGOSTINI P-1989-J-PHYS-B-ATOM-MOL-PH-V22-P1472
AGOSTINI P-1989-PHYS-REV-LETT-V63-P2208
ALLILUEV SP-1974-ZH-EKSP-TEOR-FIZ+-V66-P1283
AMMOSOV MV-1997-LASER-PHYS-V7-P79
ANDREYEV SP-1984-ZH-EKSP-TEOR-FIZ+-V86-P866
BAKOS JS-1977-PHYS-REP-V31-P209
BAYFIELD J-1979-PHYS-REP-V51-P318
BAYFIELD JE-1981-PHYS-REV-A-V24-P138
BEIGMAN IL-1994-J-PHYS-B-AT-MOL-OPT-V27-P5833
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BERSON IJ-1975-J-PHYS-B-AT-MOL-OPT-V8-P3078
BETE GA-1969-KVANTOVAYA-MEKHANIKA
BONCHBRUEVICH AM-1967-USP-FIZ-NAUK-V93-P71
BONCHBRUEVICH AM-1969-ZH-EKSP-TEO-V56-P144
BONIN KD-1993-PHYS-REV-A-V47-P944
BRESONS IY-1983-ZH-EKSP-TEOR-FIZ-V85-P70
BUREEVA LA-1997-VOZMUSHCHENNYI-ATOM
CRANCE M-1990-J-OPT-SOC-AM-B-V7-P449
DAVIDSON MD-1993-PHYS-REV-LETT-V71-P2192
DAVYDKIN VA-1971-ZHETF-V60-P125
DEBOER MP-1994-J-PHYS-B-AT-MOL-OPT-V27-P721
DEBOER MP-1993-PHYS-REV-LETT-V71-P3263
DELONE NB-1984-ATOM-SILNOM-SVETOVOM
DELONE NB-1992-LASER-PHYSICS-V2-P654
DELONE NB-1994-SPRINGER-SERIES-ATOM-V13
DELONE NB-1985-SPRINGER-SERIES-CHEM-V28
DELONE NB-1998-USP-FIZ-NAUK+-V168-P531
DELONE NB-1995-USP-FIZ-NAUK+-V165-P1295
DELONE NB-1983-USP-FIZ-NAUK+-V140-P355
DELONE NB-1976-USP-FIZ-NAUK+-V120-P3
DELONE NB-1982-ZH-EKSP-TEOR-FIZ+-V83-P2021
DORR M-1990-PHYS-REV-LETT-V64-P2003
ELYASHEVICH MA-1962-ATOMNAYA-MOL-SPEKTRO
FEARNSIDE AS-1995-PHYS-REV-A-V51-P1471
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FRISH SE-1963-OPTICHESKIE-SPEKTRY
GAVRILA M-1984-PHYS-REV-LETT-V52-P613
HUILLIER L-1989-J-OPT-SOC-AM-B-V6-P1644
JONES RR-1991-PHYS-REV-LETT-V67-P3215
KAMKE E-1976-SPRAVOCHNIK-OBYKNOVE
KELDYSH LV-1964-ZH-EKSP-TEOR-FIZ-V47-P1945
KOCH PM-1977-INT-C-MULT-PROC-POST
KRAINOV VP-1993-LASER-PHYS-V3-P756
KRAINOV VP-1993-ZH-EKSP-TEOR-FIZ-V103-P1143
KRILOVETSKY AA-1997-LASER-PHYS-V7-P542
KULYAGIN RV-1993-LASER-PHYSICS-V3-P644
LETOKHOV VS-1987-LAZERNAYA-FOTOIONIZA
MANAKOV NL-1986-PHYS-REP-V141-P320
MANAKOV NL-1989-ZH-EKSP-TEOR-FIZ+-V95-P790
MANAKOV NL-1975-ZH-EKSP-TEOR-FIZ+-V69-P842
MAQUET A-1983-PHYS-REV-A-V27-P2946
MARINESCU M-1994-PHYS-REV-A-V49-P5103
MEVEL E-1992-J-PHYS-B-AT-MOL-OPT-V25-PL401
MEVEL E-1993-PHYS-REV-LETT-V70-P406
MUR VD-1993-LASER-PHYS-V3-P462
MUR VD-1993-PISMA-ESKP-TEOR-FIZ-V57-P406
NG K-1987-PHYS-REV-A-V35-P2508
NIKISHOV AI-1964-ZH-EKSP-TEOR-FIZ-V46-P776
OBRIAN TR-1994-PHYS-REV-A-V49-PR649
PONT M-1987-PHYS-LETT-A-V123-P469
PONT M-1989-PHYS-REV-A-V40-P5659
PONT M-1988-Z-PHYS-D-ATOM-MOL-CL-V9-P297
POPOV VS-1990-PHYS-LETT-A-V149-P418
RADTSIG AA-1986-PARAMETRY-ATOMOV-ATO
RAPOPORT LP-1997-OPT-SPEKTROSK-V83-P888
RAPOPORT LP-1978-TEORIYA-MNOGOFOTONNY
RAPOPORT LP-1994-ZH-EKSP-TEOR-FIZ+-V105-P534
RITUS VI-1966-ZH-EKSP-TEO-V51-P1544
ROTTKE H-1989-Z-PHYS-D-V15-P133
SILVERMAN JN-1988-CHEM-PHYS-LETT-V153-P61
SMIRNOV BM-1982-VOZBUZHDENNYE-ATOMY
SZOKE A-1989-PHYS-REV-A-V40-P2766
TRAINHAM R-1987-PHYS-REV-LETT-V59-P2291
VOLKOVA EA-IN-PRESS-ZHETF
VOLKOVA EA-1997-ZH-EKSP-TEOR-FIZ-V111-P1194
VOLKOVA EA-1996-ZH-EKSP-TEOR-FIZ+-V109-P1586
ZELDOVICYB-1973-USP-FIZ-NAUK+-V110-P139
Source item page count: 20
Publication Date: JUL
IDS No.: 223XH
29-char source abbrev: USP FIZ NAUK



Record 2 of 100
Author(s): Popov VS; Karnakov BM; Mur VD
Title: Lorentz ionization of atoms in a strong magnetic field
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1999, Vol 88, Iss 5, pp 902-912
No. cited references: 42
Addresses: Popov VS, Inst Theoret & Expt Phys, Moscow 117218, Russia.
Inst Theoret & Expt Phys, Moscow 117218, Russia.
Moscow Engn Phys Inst, Moscow 115409, Russia.
KeywordsPlus: PERTURBATION-THEORY; STARK RESONANCES; HYDROGEN-ATOM; HIGH ORDERS; 1/N-EXPANSION
Abstract: Lorentz ionization emerges due to the motion of atoms or ions in a strong magnetic field. We use the semiclassical approximation to calculate the probability w(L) of Lorentz ionization. We also find the stabilization factor S, which takes into account the reduction by the magnetic field of the probability of ionization decay of the bound s state. We estimate the probabilities w(L) in magnetic-cumulation experiments and in astrophysics. We also qualitatively examine the dynamics of the magnetic cumulation process with allowance for the conductivity of the shell. Finally, we discuss a paradox related to the use of the quasistationary solution at the shell expansion stage.(C) 1999 American Institute of Physics. [S1063-7761(99)00905-1].
Cited references: ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ASKARYAN GA-1996-HE-LIVED-US-MEMORIES-P125
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BENASSI L-1979-PHYS-REV-LETT-V42-P1430
BITTER F-1965-SCI-AM-JUL-P64
BREZIN E-1970-PHYSICAL-REVIEW-D-V2-P1191
CARSLAW HS-1945-INTRO-MATH-THEORY-CO
DAMBURG RJ-1978-J-PHYS-B-AT-MOL-OPT-V11-P1921
DAVYDOV AS-1976-SOLID-STATE-THEORY
DELONE NB-1998-PHYS-USP-V41-P469
ELETSKIELETSKII AV-1980-SOV-PHYS-DOKL-V25-P27
FABRIKA SN-1998-129-RUSS-AC-SCI-SPEC
FERNANDEZ FM-1996-PHYS-REV-A-V54-P1206
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GRADSHTEYN IS-1980-TABLES-INTEGRALS-SUM
HEHENBERM-1974-PHYS-REV-A-V10-P1494
HERBST IW-1978-PHYS-REV-LETT-V41-P67
HERBST IW-1978-PHYS-REV-LETT-V41-P1759
JOHNSON BR-1963-PHYS-REV-LETT-V51-P2280
KARNAKOV BM-1997-JETP-LETT+-V65-P405
LANDAU LD-1984-ELECTRODYNAMICS-CONT
LANDAU LD-1977-QUANTUM-MECH-NONRELA
LIDE DR-1994-HDB-CHEM-PHYSICS
MUR VD-1993-LASER-PHYS-V3-P462
MUR VD-1999-SOV-PHYS-JETP-V88-P286
PAVLOVSKII AI-1995-COLLECTED-PAPERS-AD-P85
POPOV VS-1996-JETP-LETT+-V63-P417
POPOV VS-1997-PHYS-LETT-A-V229-P306
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1998-SOV-PHYS-JETP-V86-P860
SAKHAROV AD-1965-COLLECTED-PAPERS-AD
SAKHAROV AD-1966-SOV-PHYS-DOKL-V10-P1045
SAKHAROV AD-1966-SOV-PHYS-USP-V9-P294
SCHWINGER J-1951-PHYS-REV-V82-P664
SEIPP I-1997-ASTRON-ASTROPHYS-V318-P990
SEIPP I-1996-J-PHYS-B-AT-MOL-OPT-V29-P1
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
VAINBERG VM-1998-16-C-FUND-AT-SPECTR-P130
WICKRAMASINGHE DT-1988-ASTROPHYS-J-V327-P222
Source item page count: 11
Publication Date: MAY
IDS No.: 206BX
29-char source abbrev: J EXP THEOR PHYS



Record 3 of 100
Author(s): Watson DK; McKinney BA
Title: Improved large-N limit for Bose-Einstein condensates from perturbation theory
Source: PHYSICAL REVIEW A 1999, Vol 59, Iss 5, pp 4091-4094
No. cited references: 18
Addresses: Watson DK, Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
KeywordsPlus: EXPANSION
Abstract: We present a perturbation solution of a model Bose-Einstein Hamiltonian derived by Bohn, Esry, and Greene. In our solution we use 1/N as the perturbation parameter, where N is the number of particles in the condensate. Ground-state energies are reported for parameters approximating the Joint Institute for Laboratory Astrophysics Rb-87 experiments. We predict the critical number of atoms with negative scattering lengths that can be trapped using the effective trap frequency of the first-order equation. The N-->infinity perturbation limit, which retains a single term beyond the conventional Thomas-Fermi limit, gives ground-state energies that agree to three digits with converged results, thus providing a much improved limit for large N. [S1050-2947(99)00305-4].
Cited references: ANDERSON MH-1995-SCIENCE-V269-P198
AVERY J-1989-HYPERSPHERICAL-HARMO
BERLIN TH-1952-PHYS-REV-V86-P821
BOHN JL-COMMUNICATION
BOHN JL-1998-PHYS-REV-A-V58-P584
BRADLEY CC-1997-PHYS-REV-LETT-V78-P985
DUNN M-1994-J-CHEM-PHYS-V101-P5987
FETTER AL-1997-J-LOW-TEMP-PHYS-V106-P643
HERSCHBACH DR-1992-DIMENSIONAL-SCALING
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
PEREZGARCIA VM-1997-PHYS-REV-A-V56-P1424
POPOV VS-1990-PHYS-LETT-A-V149-P425
RUDNICK J-1987-SCIENCE-V237-P384
SMIRNOV YF-1977-SOV-J-PART-NUCL-V8-P344
STANLEY HE-1968-PHYS-REV-V176-P718
STOOF HTC-1997-J-STAT-PHYS-V87-P1353
TSIPIS CA-1996-NATO-C-BOOK-V8
UEDA M-1998-PHYS-REV-LETT-V80-P1576
Source item page count: 4
Publication Date: MAY
IDS No.: 197UB
29-char source abbrev: PHYS REV A



Record 4 of 100
Author(s): Goodson DZ; Sergeev AV
Title: On the use of algebraic approximants to sum divergent series for Fermi resonances in vibrational spectroscopy
Source: JOURNAL OF CHEMICAL PHYSICS 1999, Vol 110, Iss 16, pp 8205-8206
No. cited references: 11
Addresses: Goodson DZ, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
KeywordsPlus: DIMENSIONAL PERTURBATION-THEORY; ANHARMONIC-OSCILLATORS
Cited references: BENDER CM-1978-ADV-MATH-METHODS-SCI-P350
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
CIZEK J-1993-J-CHEM-PHYS-V99-P7331
FERNANDEZ FM-UNPUB
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
PADE H-1892-ANN-ECOLE-NORMALE-V9-P1
SERGEEV AV-1998-J-PHYS-A-MATH-GEN-V31-P4301
SERGEYEV AV-1986-USSR-COMP-MATH-MATH+-V26-P17
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
SUVERNEV AA-1997-J-CHEM-PHYS-V106-P2681
VAINBERG VM-1986-JETP-LETT+-V44-P9
Source item page count: 2
Publication Date: APR 22
IDS No.: 186QC
29-char source abbrev: J CHEM PHYS



Record 5 of 100
Author(s): Killingbeck JP
Title: Subsequence summation and the m function
Source: PHYSICS LETTERS A 1999, Vol 253, Iss 1-2, pp 28-32
No. cited references: 10
Addresses: Killingbeck JP, Observ Besancon, 41 Ave Observ, BP 1615, F-25010 Besancon, France.
Observ Besancon, F-25010 Besancon, France.
Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England.
KeywordsPlus: TRANSFORMATIONS
Abstract: A complex variable modification of the Hill determinant method is shown to give accurate values for the Weyl-Titchmarsh mo(lambda) function used in the spectral theory of the Schrodinger equation. A method of geometric sampling of partial sums is tested and shown to produce well converged results from some extremely slowly converging spectral sums for the mo(lambda) function associated with the potential V(x) = x(2). (C) 1999 Elsevier Science B.V.
Cited references: BREZINSKI C-1977-ACCELERATION-CONVERG
KILLINGBECK J-1988-PHYS-LETT-A-V132-P223
KILLINGBECK JP-1995-PHYS-LETT-A-V206-P279
LEVIN D-1973-INT-J-COMPUT-MATH-V3-P371
SERGEEV AV-1998-J-PHYS-A-MATH-GEN-V31-P4301
SHANKS D-1995-J-MATHS-PHYS-V34-P1
VANDENBROECK JM-1979-SIAM-J-MATH-ANAL-V10-P658
WEYL H-1910-MATH-ANN-V68-P220
WIMP J-1981-SEQUENCE-TRANSFORMAT
WYNN P-1956-MTAC-V10-P91
Source item page count: 5
Publication Date: MAR 15
IDS No.: 176ZP
29-char source abbrev: PHYS LETT A



Record 6 of 100
Author(s): Dunn M; Watson DK
Title: Large-dimension limit of higher-angular-momentum states of two-electron atoms
Source: PHYSICAL REVIEW A 1999, Vol 59, Iss 2, pp 1109-1124
No. cited references: 235
Addresses: Dunn M, Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
KeywordsPlus: SHIFTED 1/N EXPANSION; LARGE-N-EXPANSION; DOUBLY-EXCITED-STATES; MOLECULAR-ORBITAL DESCRIPTION; INVERSE SCATTERING TRANSFORMATION; HELIUM ISOELECTRONIC SEQUENCE; SCREENED COULOMB POTENTIALS; BARRIER STARK RESONANCES; QUASI-STATIONARY STATES; WEAKLY-BOUND SYSTEMS
Abstract: To apply the methods of dimensional scaling to higher-angular-momentum states, a formalism needs to be developed which factors the D-dimensional rotational degrees of freedom from the internal degrees of freedom. The rotational degrees of freedom multiply with increasing dimensionality, while the internal degrees of freedom remain finite in number. A suitable expansion which achieves this has been presented by the authors recently and is an N-electron D-dimensional generalization of the Schwartz expansion. A derivation of the coupled differential equations in the internal variables that result from the application of the Hamiltonian to this wave-function expansion for the atomic two-electron system has been presented by the authors in another recent paper. The coupled differential equations admit continuation in D and clearly show the complete spectrum of exact interdimensional degeneracies of the two-electron system. However, to apply the methods of dimensional scaling to the two-electron system, the system of coupled differential equations have to be solved for large D. This paper concerns itself with this issue. [S1050-2947(97)07608-7].
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
ALVES NA-1988-J-PHYS-A-MATH-GEN-V21-P3215
ANDREW K-1990-AM-J-PHYS-V58-P1177
ATAG S-1988-PHYS-REV-A-V37-P2280
AU CK-1991-J-PHYS-B-AT-MOL-OPT-V24-P4671
AVAN J-1984-NUCL-PHYS-B-V237-P159
AVAN J-1983-NUCL-PHYS-B-V224-P61
AVAN J-1984-PHYS-REV-D-V29-P2891
AVAN J-1984-PHYS-REV-D-V29-P2904
AVERY J-1993-DIMENSIONAL-SCALING-P139
AVERY J-1989-HYPERSPHERICAL-HARMO
AVERY J-1992-INT-J-QUANTUM-CHEM-V41-P673
AVERY J-1991-INT-J-QUANTUM-CHEM-V39-P657
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAG M-1992-PHYS-REV-A-V46-P6059
BELOV AA-1989-PHYS-LETT-A-V142-P389
BELOV AA-1989-THEOR-MATH-PHYS+-V81-P1294
BELOV AA-1990-ZH-EKSP-TEOR-FIZ+-V98-P25
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1992-PHYS-REV-LETT-V68-P3674
BERA PK-1993-PHYS-REV-A-V48-P4764
BERLIN TH-1952-PHYS-REV-V86-P821
BERRY RS-1988-ADV-CHEM-PHYS-V70-P35
BERRY RS-1989-CONTEMP-PHYS-V30-P1
BERRY RS-1993-DIMENSIONAL-SCALING-P485
BLEIL R-1995-INT-J-QUANTUM-CHEM-S-V29-P349
BLEIL R-1995-J-CHEM-PHYS-V103-P6529
BLINDER SM-1984-J-MATH-PHYS-V25-P905
BOERNER H-1983-REPRESENTATIONS-GROU
BOLLE D-1984-PHYS-REV-A-V30-P1279
BOTTCHER C-1994-PHYS-REV-A-V49-P1714
BOYA LJ-1994-PHYS-REV-A-V50-P4397
BUTLER GJ-1983-J-MATH-BIOL-V17-P131
CARZOLI J-IN-PRESS-PHYS-REV-A
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P735
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P2403
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHATTERJEE A-1986-PHYS-REV-A-V34-P2470
CHISHOLM CDH-1976-GROUP-THEORETICAL-TE-PCH8
CHRISTIANSEN H-1989-PHYS-REV-A-V40-P1760
DAHL JP-1993-DIMENSIONAL-SCALING-P165
DEVEGA HJ-1979-COMMUN-MATH-PHYS-V70-P29
DIRAC PAM-1958-PRINCIPLES-QUANTUM-M
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1986-J-CHEM-PHYS-V85-P4557
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P266
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P319
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1990-J-PHYS-B-AT-MOL-OPT-V23-P2435
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
DUNN M-UNPUB
DUTT R-1987-J-PHYS-B-AT-MOL-OPT-V20-P2437
DUTT R-1986-J-PHYS-B-AT-MOL-OPT-V19-P3411
DUTT R-1985-J-PHYS-B-AT-MOL-OPT-V18-P3311
DUTT R-1986-PHYS-REV-A-V34-P777
DUTT R-1986-Z-PHYS-D-ATOM-MOL-CL-V2-P207
EDMONDS AR-1960-ANGULAR-MOMENTUM-QUA
ERKOC S-1986-PHYS-REV-D-V33-P588
FANO U-1993-NEW-METHODS-QUANTUM-P225
FEAGIN JM-1988-PHYS-REV-A-V37-P4599
FEAGIN JM-1986-PHYS-REV-LETT-V57-P984
FERRELL RA-1974-PHYS-REV-A-V9-P846
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FRANTZ DD-1989-PHYS-REV-A-V40-P1175
GALLUP GA-1959-J-MOL-SPECTROSC-V3-P673
GANGOPADHYAY RS-1984-PHYS-REV-A-V30-P594
GANGYOPADHYAY RS-1985-PHYS-REV-D-V32-P3312
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GONZALEZ A-1992-FEW-BODY-SYST-V13-P105
GONZALEZ A-1991-FEW-BODY-SYST-V10-P43
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOODSON DZ-1991-PHYS-REV-A-V44-P97
GOODSON DZ-1991-PHYS-REV-A-V43-P4617
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HAGG L-1993-DIMENSIONAL-SCALING-P315
HAMERMESH M-1989-GROUP-THEORY-ITS-APP-PCH10
HERRICK DR-1983-ADV-CHEM-PHYS-V52-P1
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-J-MATH-PHYS-V16-P1047
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P7
HERSCHBACH DR-1996-INT-J-QUANTUM-CHEM-V57-P295
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1989-P-WELSCH-FD-CHEM-RES-V32-P95
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HERSHBACH DR-1987-FARADAY-DISC-CHEM-SO-V84-P465
HIKAMI S-1979-J-PHYS-A-MATH-GEN-V12-P759
HOLAS A-1991-J-PHYS-A-MATH-GEN-V24-P4249
IKHDAIR SM-1993-Z-PHYS-D-ATOM-MOL-CL-V28-P1
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1984-PHYS-REV-D-V29-P1669
IMBO TD-1985-PHYS-REV-LETT-V54-P2184
JAMEEL M-1986-J-PHYS-A-MATH-GEN-V19-P1967
JEVICKI A-1980-NUCL-PHYS-B-V171-P362
KAIS S-1995-J-CHEM-PHYS-V102-P7472
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P417
KAIS S-1993-J-CHEM-PHYS-V99-P5184
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1989-J-CHEM-PHYS-V91-P7791
KAIS S-1994-J-PHYS-CHEM-US-V98-P11015
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KAIS S-1996-NATO-ASI-3-HIGH-TECH-V8-P55
KARNAKOV BM-1994-SOV-PHYS-JETP-V79-P534
KAUSHAL RS-1984-LETT-NUOVO-CIMENTO-V41-P434
KELLMAN ME-1994-PHYS-REV-LETT-V73-P2543
KELLMAN ME-1985-PHYS-REV-LETT-V55-P1738
KOSTELECKY VA-1985-PHYS-REV-D-V32-P2627
KUDINOV AV-1982-CZECH-J-PHYS-B-V32-P556
KUDINOV AV-1983-THEOR-MATH-PHYS+-V56-P871
KVENTSEL GF-1981-PHYS-REV-A-V24-P2299
LAI CH-1987-J-MATH-PHYS-V28-P1801
LIN CD-1986-ADV-ATOM-MOL-PHYS-V22-P77
LIN CD-1995-PHYS-REP-V257-P1
LIN CD-1984-PHYS-REV-A-V29-P1019
LIN CD-1993-REV-FUNDAMENTAL-PROC-P357
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3882
LOESER JG-1986-J-CHEM-PHYS-V84-P3893
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
LOESER JG-1996-NATO-ASI-3-HIGH-TECH-V8-P33
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
LOUCK JD-1960-J-MOL-SPECTROSCOPY-V4-P285
LOUCK JD-1960-J-MOL-SPECTROSCOPY-V4-P334
LOUCK JD-1960-J-MOL-SPECTRY-V4-P298
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MIRAMONTES JL-1984-NUOVO-CIMENTO-B-V84-P10
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MOELOUT MO-COMMUNICATION
MORALES DA-1989-CHEM-PHYS-LETT-V161-P253
MORALES DA-1996-INT-J-QUANTUM-CHEM-V57-P7
MORENO G-1986-J-PHYS-A-V19-P3707
MORENO G-1984-J-PHYS-B-AT-MOL-OPT-V17-P21
MORENO G-1987-PHYS-REV-A-V35-P2722
MORGAN JD-1993-DIMENSIONAL-SCALING-P336
MORGAN JD-1993-DIMENSIONAL-SCALING-P354
MUR VD-1987-JETP-LETT+-V45-P410
MUR VD-1990-SOV-J-NUCL-PHYS+-V51-P249
MUR VD-1988-SOV-J-NUCL-PHYS+-V47-P444
MUR VD-1990-SOV-PHYS-JETP-V70-P975
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
MUSTAFA O-1993-J-QUANT-SPECTROSC-RA-V49-P65
NANOPOULOS DV-1994-RIV-NUOVO-CIMENTO-V17-P1
NIETO MM-1979-AM-J-PHYS-V47-P1067
PAGNAMENTA A-1986-PHYS-REV-D-V34-P3528
PANJA MM-1990-PHYS-REV-A-V42-P106
PANJA MM-1988-PHYS-REV-A-V38-P3937
PAPP E-1988-PHYS-REV-A-V38-P2158
PAPP E-1987-PHYS-REV-A-V36-P3550
POPOV VS-1994-JETP-LETT+-V59-P158
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1996-NATO-ASI-3-HIGH-TECH-V8-P149
POPOV VS-1994-PHYS-LETT-A-V193-P159
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
ROST JM-1993-DIMENSIONAL-SCALING-P471
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P2455
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P4293
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
ROST JM-1992-PHYS-REV-A-V46-P2410
ROY B-1987-J-PHYS-A-MATH-GEN-V20-P3051
ROY B-1986-PHYS-REV-A-V34-P5108
ROYCHOUDHURY R-1989-PHYS-REV-A-V39-P5523
ROYCHOUDHURY R-1988-PHYS-REV-A-V37-P2309
RUDNICK J-1987-SCIENCE-V237-P384
SCHULTZ DR-1994-PHYS-REV-A-V50-P1348
SCHWARTZ C-1961-PHYSICAL-REVIEW-V123-P1700
SEVER R-1988-PHYS-REV-A-V37-P3158
SEVER R-1987-PHYS-REV-A-V36-P1045
SEVER R-1987-PHYS-REV-A-V35-P2725
SINHAROY M-1984-J-PHYS-A-MATH-GEN-V17-PL687
STEPANOV SS-1991-ZH-EKSP-TEOR-FIZ+-V100-P415
SUKHATME U-1983-PHYS-REV-D-V28-P418
SUKHATME UP-1986-PHYS-REV-D-V33-P1166
SUNG SM-1993-J-PHYS-CHEM-US-V97-P2479
SUVERNEV AA-IN-PRESS-CHEM-PHYS-L
SUVERNEVV AA-UNPUB
TALMAN JD-1968-SPEICAL-FUNCTIONS-GR
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TANG AZ-1987-PHYS-REV-A-V35-P911
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
TSIPIS CA-1996-NATO-ADV-SCI-I-SERIE-V8
VAINBERG VM-1993-DIMENSIONAL-SCALING-P217
VAINBERG VM-1987-JETP-LETT+-V46-P225
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-TEOR-MAT-FIZ-V74-P399
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
VANDERMERWE PD-1985-J-CHEM-PHYS-V82-P5293
VANDERMERWE PD-1984-J-CHEM-PHYS-V81-P5976
VANDERMERWE PD-1989-PHYS-REV-A-V40-P1785
VANDERMERWE PD-1986-PHYS-REV-A-V34-P3452
VANDERMERWE PDT-1987-PHYS-REV-A-V36-P3446
VARSHNI YP-1989-PHYS-REV-A-V40-P2180
VARSHNI YP-1988-PHYS-REV-A-V38-P1595
VARSHNI YP-1987-PHYS-REV-A-V36-P3009
WATSON DK-1996-NATO-ASI-3-HIGH-TECH-V8-P83
WEYL H-1939-CLASSICAL-GROUPS
WITTEN E-1980-NATO-ADV-STUDY-I-B-V59
WITTEN E-1980-PHYS-TODAY-V33-P38
YAFFE LG-1983-PHYS-TODAY-V36-P50
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
YANEZ RJ-1994-PHYS-REV-A-V50-P3065
ZENG GJ-1994-PHYS-REV-A-V50-P4373
ZHEN Z-1993-DIMENSIONAL-SCALING-P83
ZHEN Z-1993-DIMENSIONAL-SCALING-P429
Source item page count: 16
Publication Date: FEB
IDS No.: 169YW
29-char source abbrev: PHYS REV A



Record 7 of 100
Author(s): Carzoli JC; Dunn M; Watson DK
Title: Singly and doubly excited states of the D-dimensional helium atom
Source: PHYSICAL REVIEW A 1999, Vol 59, Iss 1, pp 182-187
No. cited references: 38
Addresses: Carzoli JC, Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
KeywordsPlus: ANGULAR-MOMENTUM STATES; LARGE-N EXPANSIONS; 1/D EXPANSION; POTENTIAL SCATTERING; PERTURBATION-THEORY; QUANTUM-MECHANICS; INTERDIMENSIONAL DEGENERACIES; VARIABLE DIMENSIONALITY; SCHRODINGER-EQUATION; 2-ELECTRON ATOMS
Abstract: Large-order dimensional perturbation theory (DPT) has been used to study the ground and a number of excited states of two-electron atoms for the case L=0. Here we present an application of recent work generalizing DPT to any higher angular-momentum state. In this work we begin the investigation of P-o states, presenting results for the energies of some of the lowest-lying states and discuss the analytic structure of these energies as functions of 1/D. We also obtain energies of corresponding D-o states with almost no additional effort by making use of interdimensional degeneracies with the P-o states. [S1050-2947(98)06512-3].
Cited references: BAKER GA-1981-PADE-APPROXIMANTS-1-V13
BELOV AA-1989-THEOR-MATH-PHYS+-V81-P1294
BELOV AA-1990-ZH-EKSP-TEOR-FIZ+-V98-P25
BENDER CM-1982-PHYS-REV-A-V25-P1305
BHATIA AK-1972-PHYS-REV-A-V6-P2498
BOLLE D-1984-PHYS-REV-A-V30-P1279
BOTTCHER C-1994-PHYS-REV-A-V49-P1714
BOYA LJ-1994-PHYS-REV-A-V50-P4397
CHATTERJEE A-1990-PHYS-REP-V186-P249
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P266
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P319
DUNN M-1996-FEW-BODY-SYST-V21-P187
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
GANGYOPADHYAY RS-1985-PHYS-REV-D-V32-P3312
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GOODSON DZ-1991-PHYS-REV-A-V44-P97
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KONO A-1986-PHYS-REV-A-V34-P1727
KVENTSEL GF-1981-PHYS-REV-A-V24-P2299
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
POPOV VS-1993-DIMENSIONAL-SCALING-P217
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1987-PHYS-LETT-A-V124-P77
SCHULTZ DR-1994-PHYS-REV-A-V50-P1348
SINHAROY M-1984-J-PHYS-A-MATH-GEN-V17-PL687
SUKHATME UP-1986-PHYS-REV-D-V33-P1166
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
TSIPIS CA-1996-NEW-METHODS-QUANTUM-V8
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
Source item page count: 6
Publication Date: JAN
IDS No.: 158JD
29-char source abbrev: PHYS REV A



Record 8 of 100
Author(s): Walkup JR; Dunn M; Watson DK; Germann TC
Title: Avoided crossings of diamagnetic hydrogen as functions of magnetic field strength and angular momentum
Source: PHYSICAL REVIEW A 1998, Vol 58, Iss 6, pp 4668-4682
No. cited references: 85
Addresses: Walkup JR, Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
Univ Calif Los Alamos Natl Lab, Theoret Div T 11, Los Alamos, NM 87545 USA.
KeywordsPlus: DIMENSIONAL PERTURBATION-THEORY; CIRCULAR RYDBERG STATES; LARGE-N EXPANSIONS; POTENTIAL SCATTERING; DENSITY FUNCTIONALS; EXCEPTIONAL POINTS; 1/D EXPANSION; WAVE-PACKETS; ATOM; SPECTRA
Abstract: The energy levels of diamagnetic hydrogen as a function of two independent parameters, magnetic field strength B, and angular momentum m, are examined. Avoided crossings appear between these energy levels as either parameter is varied while the other is held fixed. These avoided crossings are directly related to degeneracies (Fermi resonances) occurring at zeroth order in perturbation theory. The mathematical basis of these degeneracies are the square-root branch points that connect the energy levels. It is found that the locations of avoided crossings in either constant-B or constant-in spectra can be predicted by visually scanning the locations of these branch points in the complex-delta plane, where delta= 1/(2 + 2 \m\) is the perturbation parameter used in this research. [S1050-2947(98)07111-X].
Cited references: ARFKEN G-1985-MATH-METHODS-PHYSICI-P377
AVERBUKH IS-1989-PHYS-LETT-A-V139-P449
BELOV AA-1990-SOV-PHYS-JETP-V71-P12
BENDER CM-1978-ADV-MATH-METHODS-SCI-PCH8
BENDER CM-1982-PHYS-REV-A-V25-P1305
BERLIN TH-1952-PHYS-REV-V86-P821
BOHM A-1986-QUANTUM-ECH-FDN-APPL-PCH21
BOLLE D-1984-PHYS-REV-A-V30-P1279
BOYA LJ-1994-PHYS-REV-A-V50-P4397
BRANDI HS-1975-PHYS-REV-A-V11-P1835
BRAUN PA-1993-J-PHYS-B-AT-MOL-OPT-V26-P3739
BRAY AJ-1974-J-PHYS-A-MATH-GEN-V7-P2144
CACCIANI P-1992-J-PHYS-B-AT-MOL-OPT-V25-P1991
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHEN L-1993-J-PHYS-B-AT-MOL-OPT-V26-PL437
DAI CM-1991-PHYSICA-B-V172-P455
DELANDE D-1991-CHAOS-QUANTUM-PHYSIC
DELANDE D-1986-COMMENTS-AT-MOL-PHYS-V19-P35
DELANDE D-1988-EUROPHYS-LETT-V5-P303
DELANDE D-1991-PHYS-REV-LETT-V66-P3237
DUNN M-1996-J-CHEM-PHYS-V104-P9870
DUNN M-1994-J-CHEM-PHYS-V101-P5987
FASSBINDER P-1996-PHYS-REV-A-V53-P2135
FERMI E-1931-Z-PHYSIK-V71-P250
FERRELL RA-1974-PHYS-REV-A-V9-P846
FRIEDICH H-1991-THEORETICAL-ATOMIC-P
FRIEDRICH H-1989-PHYS-REP-V183-P37
FRIEDRICH H-1990-THEORETICAL-ATOMIC-P
GALLAGHER TF-1988-REP-PROG-PHYS-V51-P143
GANGYOPADHYAY RS-1985-PHYS-REV-D-V32-P3312
GARSTANG RH-1977-REP-PROG-PHYS-V40-P105
GAY JC-1991-AT-MOL-PHYS-V25-P185
GAY JC-1985-ATOMIC-EXCITATION-RE
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GOLDBERG J-1991-J-PHYS-A-MATH-GEN-V24-P2785
GOLDSCHMIDT YY-1993-NUCL-PHYS-B-V393-P507
GREENSTEIN JL-1982-ASTROPHYS-J-V252-P285
HASEGAWA H-1969-PHYSICS-SOLIDS-INTEN
HASEGAWA H-1989-PROG-THEOR-PHYS-SUPP-V98-P198
HEISS WD-1991-J-MATH-PHYS-V32-P3003
HEISS WD-1990-J-PHYS-A-MATH-GEN-V23-P1167
HERSCHBACH DR-1992-DIMENSIONAL-SCALING
HERZBERG G-1945-MOLECULAR-SPECTRA-MO-V2-P215
HULET RG-1983-PHYS-REV-LETT-V51-P1430
IU CH-1991-PHYS-REV-LETT-V66-P145
IU CH-1989-PHYS-REV-LETT-V63-P1133
KAIS S-1993-J-CHEM-PHYS-V99-P417
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KLEPPNER D-1983-RYDBERG-STATES-ATOMS
KOTZE AA-1994-J-PHYS-A-MATH-GEN-V27-P3059
KVENTSEL GF-1981-PHYS-REV-A-V24-P2299
LANDAU L-1932-PHYSIK-Z-SOWJETUNION-V2-P46
LANDAU LD-1977-QUANTUM-MECH
LIANG J-1986-PHYS-REV-A-V33-P4437
MAIN J-1994-J-PHYS-B-AT-MOL-OPT-V27-P2835
MAIN J-1986-PHYS-REV-LETT-V56-P2594
MARCH NH-1985-J-MATH-PHYS-V26-P554
MARCH NH-1986-PHYS-REV-A-V34-P5106
MARCH NH-1984-PHYS-REV-A-V30-P2936
MAVROIDES JG-1972-OPTICAL-PROPERTIES-S
PARKER J-1986-PHYS-REV-LETT-V56-P716
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1990-PHYS-LETT-A-V149-P418
RAMDAS AK-1981-REP-PROG-PHYS-V44-P1297
ROBNIK M-1977-J-PHYS-A-V14-P105
RUDNICK J-1987-SCIENCE-V237-P384
SERGEEV AV-COMMUNICATION
SERRA P-1997-PHYS-REV-A-V55-P238
SINHAROY M-1984-J-PHYS-A-MATH-GEN-V17-PL687
SOLOVYOV EA-1981-ZH-EKSP-TEOR-FIZ+-V81-P1681
STANLEY HE-1968-PHYS-REV-V176-P718
STILLMAN GE-1971-SOLID-STATE-COMMUN-V9-P2245
SUKHATME UP-1986-PHYS-REV-D-V33-P1166
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
TSIPIS CA-1996-NEW-METHODS-QUANTUM-V8
VALONE SM-1994-INT-J-QUANTUM-CHEM-V49-P591
WALKUP JR-UNPUB
WANG QL-1991-PHYS-REV-A-V44-P1874
WATANABE S-1991-PHYS-REV-LETT-V67-P3227
WELCH GR-1989-PHYS-REV-LETT-V62-P893
WINTGEN D-1986-J-PHYS-B-AT-MOL-OPT-V19-P1261
WUNNER G-1981-PHYS-LETT-A-V247-P374
WUNNER G-1980-PHYS-LETT-A-V79-P159
Source item page count: 15
Publication Date: DEC
IDS No.: 145CD
29-char source abbrev: PHYS REV A



Record 9 of 100
Author(s): Mur VD; Karnakov BM; Popov VS
Title: Relativistic version of the imaginary-time formalism
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1998, Vol 87, Iss 3, pp 433-444
No. cited references: 38
Addresses: Mur VD, Moscow Engn Phys Inst, Moscow 115409, Russia.
Moscow Engn Phys Inst, Moscow 115409, Russia.
Inst Theoret & Expt Phys, Moscow 117218, Russia.
KeywordsPlus: IONIZATION; FIELD
Abstract: A relativistic version of the quasiclassical imaginary-time formalism is developed. It permits calculation of the tunneling probability of relativistic particles through potential barriers, including barriers lacking spherical symmetry. Application of the imaginary-time formalism to concrete problems calls for finding subbarrier trajectories which are solutions of the classical equations of motion, but with an imaginary time (and thus cannot be realized in classical mechanics). The ionization probability of an s level, whose binding energy can be of the order of the rest energy, under the action of electric and magnetic fields of different configuration is calculated using the imaginary-time formalism. Besides the exponential factor, the Coulomb and pre-exponential factors in the ionization probability are calculated. The Hamiltonian approach to the tunneling of relativistic particles is described briefly. Scrutiny of the ionization of heavy atoms by an electric field provides an additional argument against the existence of the "Unruh effect.'' (C) 1998 American Institute of Physics. [S1063-7761(98)00409-0].
Cited references: AGAEV SS-1982-SOV-J-NUCL-PHYS+-V36-P599
ANDREEV SP-1985-JETP-LETT+-V42-P190
BARGMANN V-1959-PHYS-REV-LETTERS-V2-P435
BATYGIN VV-1964-PROBLEMS-ELECTRODYNA
BAZ AI-1969-SCATTERING-REACTIONS
BELINSKII VA-1998-JETP-LETT+-V67-P96
BIRRELL ND-1982-QUANTUM-FIELDS-CURVE
DAVIES PCW-1975-J-PHYS-A-MATH-GEN-V8-P609
DEMKOV YN-1964-ZH-EKSP-TEOR-FIZ-V47-P918
DRUKAREV GF-1971-ZH-EKSP-TEOR-FIZ-V61-P956
FULLING SA-1973-PHYS-REV-D-V7-P2850
GINZBURG VL-1987-USP-FIZ-NAUK+-V153-P633
GREINER W-1985-QUANTUM-ELECTRODYNAM
ITZYKSON C-1980-QUANTUM-FIELD-THEORY-V1
KARNAKOV BM-1997-JETP-LETT+-V65-P405
LANDAU LD-1975-CLASSICAL-THEORY-FIE
LANDAU LD-1977-QUANTUM-MECH-NONRELA
MARINOV MS-1977-FORTSCHR-PHYS-V25-P373
NIKISHOV AI-1988-SOV-PHYS-JETP-V67-P1313
PERELOMOV AM-1967-SOV-PHYS-JETP-V25-P336
PERELOMOV AM-1967-ZH-EKSP-TEOR-FIZ+-V24-P207
PIEPER W-1969-Z-PHYS-V218-P327
POPOV VS-1970-JETP-LETT-V11-P162
POPOV VS-1997-JETP-LETT+-V66-P229
POPOV VS-1996-JETP-LETT+-V63-P417
POPOV VS-1997-PHYS-LETT-A-V229-P306
POPOV VS-1971-SOV-J-NUCL-PHYS-V12-P235
POPOV VS-1998-SOV-PHYS-JETP-V86-P860
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1971-ZH-EKSP-TEOR-FIZ+-V61-P1334
RADTSIG AA-1986-PARAMETERS-ATOMS-ATO
RINDLER W-1966-AM-J-PHYS-V34-P1174
SCHWINGER J-1951-PHYS-REV-V82-P664
SMYTHE WR-1950-STATIC-DYNAMIC-ELECT
UNRUH WG-1976-PHYS-REV-D-V14-P870
VANYASHIN VS-1965-SOV-PHYS-JETP-V21-P375
ZELDOVICH YB-1986-JETP-LETT-V43-P523
ZELDOVICH YB-1971-USP-FIZ-NAUK-V105-P403
Source item page count: 12
Publication Date: SEP
IDS No.: 129EK
29-char source abbrev: J EXP THEOR PHYS



Record 10 of 100
Author(s): Elout MO; Goodson DZ; Elliston CD; Huang SW; Sergeev AV; Watson DK
Title: Improving the convergence and estimating the accuracy of summation approximants of 1/D expansions for Coulombic systems
Source: JOURNAL OF MATHEMATICAL PHYSICS 1998, Vol 39, Iss 10, pp 5112-5122
No. cited references: 50
Addresses: Elout MO, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA.
SI Vavilov State Opt Inst, St Petersburg 199034, Russia.
KeywordsPlus: LARGE-DIMENSION LIMIT; PERTURBATION-THEORY; ELECTRONIC-STRUCTURE; 2-ELECTRON ATOMS; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; MAGNETIC-FIELD; EXCITED-STATES; HYDROGEN-ATOM; HELIUM
Abstract: The convergence of large-order expansions in delta = 1/D, where D is the dimensionality of coordinate space, for energies E(delta) of Coulomb systems is strongly affected by singularities at delta = 1 and Pade'-Borel approximants with modifications that that completely remove the singularities at delta = 1 and remove the dominant singularity at delta = 0 are demonstrated. A renormalization of the interelectron repulsion is found to move the dominant singularity of the Borel function F(delta) = Sigma(j)E(j)'/ j!, where E-j' are the the expansion coefficients of the energy with singularity structure removed at d51, farther from the origin and thereby accelerate summation convergence. The ground-state energies of He and H-2(+) are used as test cases. The new methods give significant improvement over previous summation methods. Shifted Borel summation using F-m(delta) = Sigma(j)E(j)'/Gamma(j + 1 - m) is considered. The standard deviation of results calculated with different values of the shift parameter m is proposed as a measure of summation accuracy. (C) 1998 American Institute of Physics. [S0022-2488(98)04210-8].
Cited references: BAKER JD-1990-PHYS-REV-A-V41-P1247
BENDER CM-1982-PHYS-REV-A-V25-P1305
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DUNN M-1996-FEW-BODY-SYST-V21-P187
DUNN M-1994-J-CHEM-PHYS-V101-P5987
ELOUT MO-UNPUB
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1997-PHYS-REV-A-V55-P4155
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P7
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HUANG SW-1998-PHYS-REV-A-V58-P250
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KILLINGBECK J-1981-J-PHYS-A-MATH-GEN-V14-P1005
LIPATOV LN-1977-JETP-LETT-V25-P79
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1996-NEW-METHODS-QUANTUM-P1
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
MLODINOW LD-1981-THESIS-U-CALIFORNIA
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
NINHAM BW-1963-J-MATH-PHYS-V4-P679
POPOV VS-1994-JETP-LETT-V78-P303
POPOV VS-1994-PHYS-LETT-A-V193-P165
ROSENTHAL CM-1971-J-CHEM-PHYS-V55-P2474
SERRA P-1996-CHEM-PHYS-LETT-V260-P302
SERRA P-1997-PHYS-REV-A-V55-P238
SERRA P-1996-PHYS-REV-LETT-V77-P466
SUVERNEV AA-1997-J-CHEM-PHYS-V107-P4099
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
VANDERMERWE PD-1985-J-CHEM-PHYS-V82-P5293
VANDERMERWE PD-1984-J-CHEM-PHYS-V81-P5976
VANDERMERWE PDT-1987-PHYS-REV-A-V36-P3446
WATSON DK-1995-PHYS-REV-A-V51-PR5
ZINNJUSTIN J-1981-PHYS-REP-V109-P109
Source item page count: 11
Publication Date: OCT
IDS No.: 124NC
29-char source abbrev: J MATH PHYS-NY



Record 11 of 100
Author(s): Slobodenyuk VA
Title: Potentials with convergent Schwinger-DeWitt expansion
Source: INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 1998, Vol 37, Iss 6, pp 1753-1771
No. cited references: 22
Addresses: Slobodenyuk VA, Ulyanovsk State Univ, Phys Tech Dept, Ulyanovsk 432700, Russia.
Ulyanovsk State Univ, Phys Tech Dept, Ulyanovsk 432700, Russia.
KeywordsPlus: EVOLUTION OPERATOR KERNEL; PERTURBATION-THEORY; BEHAVIOR; SERIES
Abstract: Convergence of the Schwinger-DeWitt expansion for the evolution operator kernel for special class of potentials is studied. It is shown that this expansion, which is in the general case asymptotic, converges for the potentials considered (widely used, in particular, in one-dimensional many-body problems), and that convergence takes place only for definite discrete values of the coupling constant. For other values of the charge, a divergent expansion determines the kernels having essential singularity at the origin (beyond the usual delta-function). If one considers only this class of potentials, then one can avoid many problems connected with asymptotic expansions, and one gets a theory with discrete values of the coupling constant that is in correspondence with the discreteness of charge in nature. This approach can be applied to quantum field theory.
Cited references: BARVINSKY AO-1995-J-MATH-PHYS-V36-P30
BENDER CM-1971-PHYS-REV-D-V7-P1620
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
CALOGERO F-1975-LETT-NUOVO-CIMENTO-V13-P383
DEWITT BS-1965-DYNAMICAL-THEORY-GRO
DEWITT BS-1975-PHYS-REP-C-V19-P297
HALLIDAY IG-1980-PHYS-REV-D-V21-P1529
KAZAKOV DI-1980-FORTSCHR-PHYS-V28-P465
LIPATOV LN-1977-ZH-EKSP-TEOR-FIZ+-V72-P411
OLSHANETSKY AO-1983-PHYS-REP-V94-P315
OSBORN TA-1983-J-MATH-PHYS-V24-P1093
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
SCHWINGER J-1951-PHYS-REV-V82-P64
SISSAKIAN AN-1992-Z-PHYS-C-PART-FIELDS-V54-P263
SLOBODENYUK VA-1996-MOD-PHYS-LETT-A-V11-P1729
SLOBODENYUK VA-1996-THEOR-MATH-PHYS+-V109-P1302
SLOBODENYUK VA-1995-THEOR-MATH-PHYS+-V105-P1387
SLOBODENYUK VA-1993-Z-PHYS-C-PART-FIELDS-V58-P575
SUTHERLAND B-1972-PHYS-REV-A-V5-P1372
SUTHERLAND B-1971-PHYS-REV-A-V4-P2019
USHVERIDZE AG-1983-YAD-FIZ-V38-P798
Source item page count: 19
Publication Date: JUN
IDS No.: 117RB
29-char source abbrev: INT J THEOR PHYS



Record 12 of 100
Author(s): Popov VS; Sergeev AV
Title: Ionization of atoms in weak fields and the asymptotic behavior of higher-order perturbation theory
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1998, Vol 86, Iss 6, pp 1122-1126
No. cited references: 45
Addresses: Popov VS, Inst Theoret & Expt Phys, Moscow 117218, Russia.
Inst Theoret & Expt Phys, Moscow 117218, Russia.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
KeywordsPlus: ANHARMONIC-OSCILLATOR; PADE APPROXIMANTS; MAGNETIC-FIELD; GROUND-STATE; HYDROGEN; 1/N-EXPANSION; COULOMB
Abstract: Using the imaginary time method, we study the structure of the perturbation series for the hydrogen atom in electric E and magnetic H fields. It is shown that there is a "critical" value of the ratio gamma = H/E at which the perturbation series for the ground state changes from having a fixed sign (for gamma < gamma(c)) to having a variable sign (for gamma > gamma(c)). This conclusion is confirmed by direct higher-order perturbation calculations. The change in the asymptotic regime is explained by competition among the contributions of the various complex trajectories that describe the subbarrier motion of the electrons. Here the parameter gamma(c) depends on the angle theta between the electric and magnetic fields. (C) 1998 American Institute of Physics.
Cited references: ADAMS BG-1980-PHYS-REV-A-V21-P1914
ADAMS BG-1979-PHYS-REV-LETT-V43-P691
ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1982-ZH-EKSP-TEOR-FIZ+-V82-P77
BAZ AI-1971-SCATTERING-REACTIONS
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
BETHE HA-1957-HDB-PHYSIK-V35-P88
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DYSON FJ-1952-PHYS-REV-V85-P631
ELETSKII VL-1980-DOKL-AKAD-NAUK-SSSR+-V250-P74
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GALINDO A-1976-NUOVO-CIMENTO-B-V34-P155
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KARNAKOV BM-1997-JETP-LETT+-V65-P405
KOTOVA LP-1968-SOV-PHYS-JETP-V27-P616
LAMBIN P-1978-AM-J-PHYS-V46-P1144
LANDAU LD-1977-QUANTUM-MECH
LISITSA VS-1987-USP-FIZ-NAUK+-V153-P379
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MARINOV MS-1972-YADERNAYA-FIZIKA-V15-P1271
MUR VD-1993-LASER-PHYS-V3-P462
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V23-P924
POPOV VS-1971-JETP-LETT-V13-P185
POPOV VS-1996-JETP-LETT+-V63-P417
POPOV VS-1996-NEW-METHODS-QUANTUM-P149
POPOV VS-1997-PHYS-LETT-A-V229-P306
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1994-SOV-PHYS-JETP-V78-P303
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
POPOV VS-1972-ZH-EKSP-TEOR-FIZ+-V34-P709
PRIVMAN V-1981-PHYS-LETT-A-V81-P326
PRIVMAN V-1980-PHYS-REV-A-V22-P1833
SERGEEV AV-1982-SOV-PHYS-JETP-V55-P625
SILVERSTONE HJ-1985-PHYS-REV-A-V32-P1965
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
SMIRNOV BM-1986-PHYSICS-ATOMS-IONS
VAINBERG VM-1998-SOV-PHYS-JETP-V86-P305
VAINBERG VM-1981-SOV-PHYS-JETP-V54-P833
VRSCAY ER-1986-PHYS-REV-A-V33-P1433
Source item page count: 5
Publication Date: JUN
IDS No.: 107XT
29-char source abbrev: J EXP THEOR PHYS



Record 13 of 100
Author(s): Popov VS; Karnakov BM; Mur VD
Title: Ionization of atoms in electric and magnetic fields and the imaginary time method
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1998, Vol 86, Iss 5, pp 860-874
No. cited references: 56
Addresses: Popov VS, Inst Theoret & Expt Phys, Moscow 117259, Russia.
Inst Theoret & Expt Phys, Moscow 117259, Russia.
Tech Univ, Moscow Engn Phys Inst, Moscow 115409, Russia.
KeywordsPlus: ORDER PERTURBATION-THEORY; HYDROGEN-ATOM; STARK RESONANCES; RYDBERG ATOMS; 1/N-EXPANSION
Abstract: A semiclassical theory is developed for the ionization of atoms and negative ions in constant, uniform electric and magnetic fields, including the Coulomb interaction between the electron and the atomic core during tunneling. The case of crossed fields (Lorentz ionization) is examined specially, as well as the limit of a strong magnetic field. Analytic equations are derived for arbitrary fields E and H that are weak compared to the characteristic intraatomic fields. The major results of this paper are obtained using the ''imaginary time" method (ITM), in which tunneling is described using the classical equations of motion but with purely imaginary "time." The possibility of generalizing the ITM to the relativistic case, as well as to states with nonzero angular momentum, is pointed out. (C) 1998 American Institute of Physics. [S1063-7761(98)00405-3].
Cited references: ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1982-SOV-PHYS-JETP-V55-P46
ALLILUEV SP-1993-ZH-EKSP-TEOR-FIZ+-V104-P3569
ANDREEV SP-1985-JETP-LETT+-V42-P190
ANDREEV SP-1983-JETP-LETT+-V37-P187
ANDREEV SP-1984-SOV-PHYS-JETP-V59-P506
ANDREEV SP-1985-TEOR-MAT-FIZ-V64-P287
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
CHU MC-1984-PHYS-REV-A-V29-P675
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
DAVYDOV AS-1988-SOLID-STATE-THEORY
DEMKOV YN-1988-ZERO-RANGE-POTENTIAL
DEMKOV YN-1964-ZH-EKSP-TEOR-FIZ-V47-P918
DEMKOV YN-1969-ZHETF-V57-P1431
DRUKAREV GF-1971-SOV-PHYS-JETP-V34-P509
FERNANDEZ FM-1996-PHYS-REV-A-V54-P1206
FEYNMAN RP-1965-QUANTUM-MECH-PATH-IN
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GORKOV LP-1967-SOV-PHYS-JETP-V26-P449
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
KARNAKOV BM-1997-JETP-LETT+-V65-P405
KELDYSH LV-1964-ZH-EKSP-TEOR-FIZ+-V20-P1307
KOTOVA LP-1968-SOV-PHYS-JETP-V27-P616
LANDAU LD-1988-CLASSICAL-THEORY-FIE
LANDAU LD-1974-QUANTUM-MECH-NONRELA
LISITSA VS-1987-USP-FIZ-NAUK+-V153-P379
MAGARILL LI-1971-SOV-PHYS-JETP-V33-P97
MAIN J-1994-J-PHYS-B-AT-MOL-OPT-V27-P2835
MANAKOV NL-1986-ZH-EKSP-TEOR-FIZ+-V91-P404
MELEZHIK VS-1993-PHYS-REV-A-V48-P4528
NIKISHOV AI-1967-ZH-EKSP-TEO-V52-P223
NIKISHOV AI-1966-ZH-EKSP-TEOR-FIZ-V50-P255
PERELOMOV AM-1967-SOV-PHYS-JETP-V25-P336
PERELOMOV AM-1966-SOV-PHYS-JETP-V24-P207
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V23-P924
POPOV VS-1997-JETP-LETT+-V66-P229
POPOV VS-1996-JETP-LETT+-V63-P417
POPOV VS-1997-PHYS-LETT-A-V229-P306
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
RADTSIG AA-1968-PARAMETERS-ATOMS-ATO
RAPOPORT LP-1978-THEORY-MANY-PHOTON-P
SEIPP I-1997-ASTRON-ASTROPHYS-V318-P990
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
SMIRNOV BM-1965-SOV-PHYS-JETP-V22-P585
SOLOVEV EA-1983-ZH-EKSP-TEOR-FIZ+-V85-P109
TSIPIS CA-1996-NEW-METHODS-QUANTUM
VAIBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1986-JETP-LETT+-V44-P9
WANG JH-1995-PHYS-REV-A-V52-P4508
YAMABE T-1977-PHYS-REV-A-V16-P877
ZON BA-1971-SOV-PHYS-JETP-V34-P515
Source item page count: 15
Publication Date: MAY
IDS No.: 107XQ
29-char source abbrev: J EXP THEOR PHYS



Record 14 of 100
Author(s): Sergeev AV; Goodson DZ
Title: Semiclassical self-consistent field perturbation theory for the hydrogen atom in a magnetic field
Source: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1998, Vol 69, Iss 2, pp 183-192
No. cited references: 47
Addresses: Goodson DZ, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
SI Vavilov State Opt Inst, St Petersburg 199034, Russia.
Author Keywords: self-consistent field theory; semiclassical perturbation theory; dimensional perturbation theory; adiabatic approximations; hydrogen atom in magnetic field
KeywordsPlus: LARGE-DIMENSION LIMIT; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; ENERGY-LEVELS; 2-ELECTRON ATOMS; EXCITED-STATES; 1/N EXPANSION; HARTREE-FOCK; SYSTEMS; EIGENVALUES
Abstract: A recently developed perturbation theory for solving self-consistent field equations is applied to the hydrogen atom in a strong magnetic field. This system has been extensively studied using other methods and is therefore a good test case for the new method. The perturbation theory.yields summable large-order expansions. The accuracy of the self-consistent field approximation varies according to field strength and quantum state but is often higher than the accuracy from adiabatic approximations. A new derivation is presented for the asymptotic adiabatic approximation, the most useful of the adiabatic approaches. This derivation uses semiclassical perturbation theory without invoking an adiabatic hypothesis. (C) 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 183-192, 1998.
Cited references: 1982-INT-J-QUANT-CHEM-V21-P1
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAKER JD-1990-PHYS-REV-A-V41-P1247
BALDERESCHI A-1970-P-INT-C-PHYS-SEMICON-P191
BENDER CM-1982-PHYS-REV-A-V25-P1305
DUNN M-1994-J-CHEM-PHYS-V101-P5987
FARRELLY D-1986-J-CHEM-PHYS-V84-P6285
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
FRIEDRICH H-1982-PHYS-REV-A-V26-P1827
GARSTANG RH-1977-REP-PROG-PHYS-V40-P105
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1996-NEW-METHODS-QUANTUM-P71
GOODSON DZ-1997-PHYS-REV-A-V55-P4155
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P7
HERSCHBACH DR-1996-INT-J-QUANTUM-CHEM-V57-P295
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
JONES MD-1996-PHYS-REV-A-V54-P219
KAIS S-1993-J-CHEM-PHYS-V98-P3990
LIU CR-1987-PHYS-REV-A-V35-P647
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1996-NEW-METHODS-QUANTUM-P1
MARCH NH-1984-PHYS-REV-A-V30-P2936
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
NEALE L-1995-ASTROPHYS-J-V454-PL169
PROSCHEL P-1982-J-PHYS-B-AT-MOL-OPT-V15-P1959
ROSNER W-1983-PHYS-REV-A-V28-P2071
RUDER H-1994-ATOMS-STRONG-MAGNETI
SCHIFF LI-1939-PHYS-REV-V55-P59
SERGEEV AV-1989-SOV-J-NUCL-PHYS+-V50-P589
SHERTZER J-1989-PHYS-REV-A-V40-P4777
SIMOLA J-1978-J-PHYS-B-AT-MOL-OPT-V11-P3309
SUKHATME U-1983-PHYS-REV-D-V28-P418
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
WATSON DK-1995-PHYS-REV-A-V51-PR5
WUNNER G-1980-ASTROPHYS-J-V240-P971
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 10
Publication Date: AUG 5
IDS No.: 102WJ
29-char source abbrev: INT J QUANTUM CHEM



Record 15 of 100
Author(s): Huang SW; Goodson DZ; Lopez-Cabrera M; Germann TC
Title: Large-order dimensional perturbation theory for diatomic molecules within the Born-Oppenheimer approximation
Source: PHYSICAL REVIEW A 1998, Vol 58, Iss 1, pp 250-257
No. cited references: 50
Addresses: Huang SW, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
Harvard Univ, Dept Chem, Cambridge, MA 02138 USA.
Univ Calif Los Alamos Natl Lab, Theoret Div T11, Los Alamos, NM 87545 USA.
KeywordsPlus: GROUND-STATE ENERGY; VARIABLE DIMENSIONALITY; 1/D EXPANSION; LIMIT; SERIES; ATOMS; H-2+; H2+; RENORMALIZATION; 1/N-EXPANSION
Abstract: A renormalization of the D-dimensional Hamiltonian is developed to ensure that the large-D limit corresponds to a single well at any value of the internuclear distance R. This avoids convergence problems caused by a symmetry-breaking transition that is otherwise expected to occur when R is approximately equal to the equilibrium bond distance R-eq, With larger R giving a double well. This symmetry breaking has restricted the applicability of large-order perturbation theory in 1/D to cases where R is significantly less than R-eq. The renormalization greatly extends the range of R for which the large-order expansion can be summed. A numerical demonstration is presented for H-2(+). The 1/D expansions are summed using Pade-Borel approximants with modifications that explicitly model known singularity structure.
Cited references: ARTECA GA-1990-LARGE-ORDER-PERTURBA-P126
ATAG S-1988-PHYS-REV-A-V37-P2280
AUSTIN EJ-1984-J-PHYS-A-MATH-GEN-V17-P367
BELOV AA-1990-ZH-EKSP-TEOR-FIZ+-V98-P25
BLEIL R-1995-J-CHEM-PHYS-V103-P6529
CIZEK J-1985-INT-J-QUANTUM-CHEM-S-V20-P65
COHEN JM-1996-INT-J-QUANTUM-CHEM-V59-P445
COULSON CA-1961-VALENCE
DARBOUX MG-1878-J-MATH-V4-P377
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DYSON FJ-1952-PHYS-REV-V85-P631
ELOUT MO-IN-PRESS-J-MATH-PHYS
FEINBERG MJ-1971-J-CHEM-PHYS-V54-P1495
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
FRANTZ DD-1989-PHYS-REV-A-V40-P1175
FRNTZ DD-QCMP071-IND-U-DEP-CH
FROST AA-1956-J-CHEM-PHYS-V25-P1150
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GOODSON DZ-1993-DIMENSIONAL-SCALING-P115
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1997-PHYS-REV-A-V55-P4155
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P61
HERSCHBACH DR-1996-INT-J-QUANTUM-CHEM-V57-P295
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1994-J-PHYS-CHEM-US-V98-P11015
KILLINGBECK J-1981-J-PHYS-A-MATH-GEN-V14-P1005
LOESER JG-1996-NEW-METHODS-QUANTUM-P1
LOPEZ MM-1991-THESIS-U-MICHIGAN-P88
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
NINHAM BW-1963-J-MATH-PHYS-V4-P679
PAULING L-1935-INTRO-QUANTUM-MECH
POPOV VS-1994-PHYS-LETT-A-V193-P165
ROSEN N-1931-PHYS-REV-V38-P2099
ROST JM-1992-J-PHYS-CHEM-US-V97-P2461
SUNG SM-1992-J-PHYS-CHEM-US-V97-P2479
TELLER E-1970-PHYSICAL-CHEM-ADV-TR-V5-P35
VINETTE F-1991-J-MATH-PHYS-V32-P3392
WATSON DK-1995-PHYS-REV-A-V51-PR5
WENIGER EJ-1993-J-MATH-PHYS-V34-P571
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 8
Publication Date: JUL
IDS No.: ZZ998
29-char source abbrev: PHYS REV A



Record 16 of 100
Author(s): Sergeev AV; Goodson DZ
Title: Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: Application to anharmonic oscillators
Source: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 1998, Vol 31, Iss 18, pp 4301-4317
No. cited references: 56
Addresses: Sergeev AV, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
SI Vavilov State Opt Inst, St Petersburg 199034, Russia.
KeywordsPlus: GROUND-STATE ENERGY; SCHRODINGER PERTURBATION-THEORY; SERIES ANALYSIS; EXCHANGE
Abstract: The divergent Rayleigh-Schrodinger perturbation expansions for energy eigenvalues of cubic, quartic, sextic and octic oscillators are summed using algebraic approximants. These approximants are generalized Pade approximants that are obtained from an algebraic equation of arbitrary degree. Numerical results indicate that given enough terms in the asymptotic expansion the rate of convergence of the diagonal staircase approximant sequence increases with the degree. Different branches of the approximants converge to different branches of the function. The success of the high-degree approximants is attributed to their ability to model the function on multiple sheets of the Riemann surface and to reproduce the correct singularity structure in the limit of large perturbation parameter. An efficient recursive algorithm for computing the diagonal approximant sequence is presented.
Cited references: ALVAREZ G-1995-J-PHYS-A-V27-P4589
ALVAREZ G-1988-PHYS-REV-A-V37-P4079
ARTECA GA-1990-LARGE-ORDER-PERTURBA
AUSTIN EJ-1984-J-PHYS-A-MATH-GEN-V17-P367
BAKER GA-1975-ESSENTIALS-PADE-APPR
BAKER GA-1996-PADE-APPROXIMANTS
BENDER CM-1978-ADV-MATH-METHODS-SCI
BENDER CM-1974-PHYS-REV-D-V9-P2324
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
BRAK R-1990-J-PHYS-A-MATH-GEN-V23-PL1331
CASWELL WE-1979-ANN-PHYS-NEW-YORK-V123-P153
CIZEK J-1982-INT-J-QUANTUM-CHEM-V21-P27
COHEN M-1986-J-PHYS-A-MATH-GEN-V19-P683
COMMON AK-1982-J-PHYS-A-MATH-GEN-V15-P3665
CONNOR JNL-1981-MOL-PHYS-V43-P397
CRUTCHFIELD WY-1978-PHYS-LETT-B-V77-P109
DEBELL K-1992-J-PHYS-A-MATH-GEN-V25-P1815
DELLADORA J-1979-SPRINGER-LECT-NOTES-V765-P85
DMITRIEVA IK-1980-PHYS-LETT-A-V79-P47
DRUMMOND JE-1981-J-PHYS-A-MATH-GEN-V14-P1651
DUNN M-1994-J-CHEM-PHYS-V101-P5987
FERNANDEZ FM-1996-J-CHEM-PHYS-V105-P10444
FRIEDMAN RS-1995-J-PHYS-CHEM-US-V99-P3184
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GRAFFI S-1978-J-MATH-PHYS-V19-P1002
GRAFFI S-1970-PHYSICS-LETTERS-B-V32-P631
GROZDANOV TP-1990-PHYS-REV-A-V42-P2703
GUARDIOLA R-1992-NUOVO-CIMENTO-B-V107-P713
HAMER CJ-1992-PHYS-REV-D-V45-P4652
HERMITE C-1893-ANN-MATH-2-V21-P289
HUNTER G-1982-STUD-APPL-MATH-V66-P217
JEZIORSKI B-1980-J-CHEM-PHYS-V73-P6215
KILLINGBECK J-1981-J-PHYS-A-V17-P1005
LIU KL-1981-CAN-J-PHYS-V59-P141
LOEFFEL JJ-1969-PHYSICS-LETTERS-B-V30-P656
MAYER IL-1985-J-PHYS-C-SOLID-STATE-V18-P3297
MEISSNER H-1997-PHYS-REV-A-V56-P1189
PADE H-1894-J-MATH-PURES-APPL-V10-P291
REID CE-1967-INT-J-QUANTUM-CHEM-V1-P521
SERGEEV AV-1995-J-PHYS-A-MATH-GEN-V28-P4157
SERGEYEV AV-1986-USSR-COMP-MATH-MATH+-V26-P17
SEZNEC R-1979-J-MATH-PHYS-V20-P1398
SHAFER RE-1974-SIAM-J-NUMER-ANAL-V11-P447
SHANLEY PE-1986-PHYS-LETT-A-V117-P161
SHORT L-1979-J-PHYS-G-NUCL-PARTIC-V5-P167
SIMON B-1970-ANN-PHYS-V58-P76
SUVERNEV AA-1997-J-CHEM-PHYS-V106-P2681
TURBINER AV-1988-J-MATH-PHYS-V29-P2053
USHVERIDZE AG-1988-J-PHYS-A-MATH-GEN-V21-P955
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1988-TEOR-MAT-FIZ-V74-P399
VINETTE F-1991-J-MATH-PHYS-V32-P3392
WENIGER EJ-1996-ANN-PHYS-NEW-YORK-V246-P133
WENIGER EJ-1993-J-MATH-PHYS-V34-P571
WOLFRAM S-1991-MATH-SYSTEM-DOING-MA
Source item page count: 17
Publication Date: MAY 8
IDS No.: ZP034
29-char source abbrev: J PHYS-A-MATH GEN



Record 17 of 100
Author(s): Vainberg VM; Gani VA; Kudryavtsev AE
Title: High-order perturbation theory for the hydrogen atom in a magnetic field
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1998, Vol 86, Iss 2, pp 305-311
No. cited references: 27
Addresses: Vainberg VM, Inst Theoret & Expt Phys, Moscow 117259, Russia.
Inst Theoret & Expt Phys, Moscow 117259, Russia.
Abstract: The states of a hydrogen atom with principal quantum numbers n less than or equal to 3 in a constant uniform magnetic field H are studied. Coefficients in the expansion of the energy of these states in powers of H-2 up to the 75th order are obtained. Series for the energies of the states and the wave functions are summed to values of H on the order of the atomic magnetic field. A generalization of the moment method upon which these calculations are based can be used in other cases in which a hydrogen atom is perturbed by a potential with a polynomial dependence on the coordinates. (C) 1998 American Institute of Physics.
Cited references: ADAMS BG-1980-PHYS-REV-A-V21-P1914
ADER JP-1983-PHYS-LETT-A-V97-P178
AHARONOV Y-1980-PHYS-REV-A-V22-P328
AHARONOV Y-1979-PHYS-REV-A-V20-P2245
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1982-ZH-EKSP-TEOR-FIZ+-V82-P77
AVRON JE-1981-ANN-PHYS-NEW-YORK-V131-P73
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1973-PHYS-REV-D-V7-P1620
CABIB D-1972-NUOVO-CIMENTO-B-V10-P185
CIZEK J-1982-INT-J-QUANTUM-CHEM-V21-P27
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
ELETSKII VL-1980-DOKL-AKAD-NAUK-SSSR+-V250-P74
GALINDO A-1976-NUOVO-CIMENTO-B-V34-P155
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
KILLINGBECK J-1978-PHYS-LETT-A-V65-P87
LISITSA VS-1987-USP-FIZ-NAUK+-V153-P379
PEKAR VS-1971-TEOR-MAT-FIZ-V9-P140
POLIKANOV VS-1967-ZH-EKSP-TEOR-FIZ+-V25-P882
POPOV VS-1996-JETP-LETT+-V63-P417
PRIVMAN V-1980-PHYS-REV-A-V22-P1833
SVENSON RJ-1972-J-CHEM-PHYS-V57-P1734
TURBINER AV-1982-Z-PHYS-A-HADRON-NUCL-V308-P111
TURBINER AV-1983-ZH-EKSP-TEOR-FIZ+-V84-P1329
WANG JH-1995-PHYS-REV-A-V52-P4508
ZIMAN J-1971-MODERN-QUANTUM-THEOR-PCH3
Source item page count: 7
Publication Date: FEB
IDS No.: ZD541
29-char source abbrev: J EXP THEOR PHYS



Record 18 of 100
Author(s): Slobodenyuk VA
Title: Convergence of the Schwinger-DeWitt expansion for some potentials
Source: INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 1998, Vol 37, Iss 1, pp 563-569
No. cited references: 13
Addresses: Slobodenyuk VA, Ulyanovsk State Univ, Dept Tech Phys, Ulyanovsk 432700, Russia.
Ulyanovsk State Univ, Dept Tech Phys, Ulyanovsk 432700, Russia.
KeywordsPlus: EVOLUTION OPERATOR KERNEL
Abstract: The time dependence of the evolution operator kernel for the Schrodinger equation has been studied with a help of the Schwinger-D-Witt expansion. For many of potentials this expansion is divergent. But there are nontrivial potentials for which the Schwinger-DeWitt expansion is convergent. These are, e.g., V = g/x(2), V = g/cosh(2)x, V = g/sinh(2)x, V = g/sin(2)x. For all of them the expansion is convergent when g = lambda(lambda - 1)/2 and lambda is integer. The theories with these potentials have no divergences and in this sense they are "good" potentials, in contrast to other ones. So it seems natural to pay special attention to these "good" potentials. Besides convergence, they have another interesting feature: convergence takes place only for discrete values of the charge g. Hence, in the theories of this class the charge is quantized.
Cited references: BARVINSKY AO-1995-J-MATH-PHYS-V36-P30
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
DEWITT BS-1965-DYNAMICAL-THEORY-GRO
DEWITT BS-1975-PHYS-REP-C-V19-P297
LIPATOV LN-1977-ZH-EKSP-TEOR-FIZ+-V72-P411
OSBORN TA-1983-J-MATH-PHYS-V24-P1093
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
SCHWINGER J-1951-PHYS-REV-V82-P664
SLOBODENYUK VA-1995-9570-IHEP
SLOBODENYUK VA-1996-IN-PRESS-THEORETICAL-V109
SLOBODENYUK VA-1996-MOD-PHYS-LETT-A-V11-P1729
SLOBODENYUK VA-1995-THEOR-MATH-PHYS+-V105-P1387
SLOBODENYUK VA-1993-Z-PHYS-C-PART-FIELDS-V58-P575
Source item page count: 7
Publication Date: JAN
IDS No.: ZD912
29-char source abbrev: INT J THEOR PHYS



Record 19 of 100
Author(s): Sergeev AV; Goodson DZ
Title: Self-consistent field perturbation theory of molecular vibrations
Source: MOLECULAR PHYSICS 1998, Vol 93, Iss 3, pp 477-484
No. cited references: 35
Addresses: Sergeev AV, So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
So Methodist Univ, Dept Chem, Dallas, TX 75275 USA.
SI Vavilov State Opt Inst, St Petersburg 199034, Russia.
KeywordsPlus: COMPLEX ENERGY EIGENVALUES; WAVE-FUNCTIONS; BOUND-STATES; SYSTEM; SPECTROSCOPY; DYNAMICS; SERIES; ORDER; MODEL
Abstract: Perturbation theory is used to perform non-iterative calculations of energy eigenvalues of the coupled ordinary differential equations that result from imposing separability assumptions in terms of normal coordinates on vibrational wavefunctions. Various model Hamiltonians with 2 or 3 coupled normal modes are studied and the increase of computational cost with the number of degrees of freedom is analysed. Quadratic Pade approximants of the perturbation expansions are rapidly convergent, and directly yield complex numbers for resonance eigenvalues. For a 3-mode system, results are obtained within partial separability assumptions, with a pair of modes left coupled. Large-order perturbation theory with partial separability is suggested as an alternative to low-order exact perturbation theory.
Cited references: BACIC Z-1986-J-PHYS-CHEM-US-V90-P3606
BOWMAN JM-1986-ACCOUNTS-CHEM-RES-V19-P202
BOWMAN JM-1991-J-CHEM-PHYS-V94-P454
CARNEY GD-1988-J-CHEM-SOC-FARAD-T-2-V84-P1277
CHRISTOFFEL KM-1982-CHEM-PHYS-LETT-V85-P220
CHRISTOFFEL KM-1982-J-CHEM-PHYS-V76-P5370
CIZEK J-1993-J-CHEM-PHYS-V99-P7331
CONNOR JNL-1981-MOL-PHYS-V43-P397
DAVIS MJ-1981-J-CHEM-PHYS-V75-P246
DUNN M-1994-J-CHEM-PHYS-V101-P5987
EASTES W-1974-J-CHEM-PHYS-V61-P4301
FARRELLY D-1983-CHEM-PHYS-LETT-V96-P599
FARRELLY D-1986-J-CHEM-PHYS-V84-P6285
FRIED LE-1988-J-PHYS-CHEM-US-V92-P3144
GERBER RB-1988-ADV-CHEM-PHYS-V70-P97
GERBER RB-1990-DYNAMICS-POLYMERIC-V-P343
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1997-PHYS-REV-A-V55-P4155
JELSKI DA-1996-J-COMPUT-CHEM-V17-P1645
JUNG JO-1996-J-CHEM-PHYS-V105-P10332
KAIS S-1993-J-CHEM-PHYS-V98-P3990
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
NOID DW-1980-J-CHEM-PHYS-V73-P391
NORRIS LS-1996-J-CHEM-PHYS-V105-P11261
ROITBERG A-1995-SCIENCE-V268-P1319
SERGEEV AV-1998-IN-PRESS-INT-J-QUANT
SERGEEV AV-1995-J-PHYS-A-MATH-GEN-V28-P4157
SHAFER RE-1972-SIAM-J-NUMER-ANAL-V11-P447
SIBERT EL-1988-J-CHEM-PHYS-V88-P4378
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
SUVERNEV AA-1997-J-CHEM-PHYS-V107-P4099
SUVERNEV AA-1997-J-CHEM-PHYS-V106-P2681
VAINBERG VM-1986-JETP-LETT+-V44-P9
WAITE BA-1980-J-CHEM-PHYS-V73-P3713
Source item page count: 8
Publication Date: FEB 20
IDS No.: YY054
29-char source abbrev: MOL PHYS



Record 20 of 100
Author(s): Slobodenyuk VA
Title: On convergence of the Schwinger-De Witt expansion
Source: MODERN PHYSICS LETTERS A 1997, Vol 12, Iss 37, pp 2889-2903
No. cited references: 14
Addresses: Slobodenyuk VA, IN Ulyanov State Univ, Dept Tech Phys, L Tostogo Str 42, Ulyanovsk 432700, Russia.
IN Ulyanov State Univ, Dept Tech Phys, Ulyanovsk 432700, Russia.
KeywordsPlus: EVOLUTION OPERATOR KERNEL
Abstract: The Schwinger-De Witt expansion for the evolution operator kernel of the Schrodinger equation is studied for convergence. It is established that divergence of this expansion which is usually implied for all continuous potentials, excluding those of the form V(q) = aq(2) + bq + c, takes place only if the coupling constant g is treated as an independent variable. But the expansion may be convergent for some kinds of potentials and for some discrete values of charge, if the latter is considered as fixed parameter. Class of such potentials is interesting because inside it the property of discreteness of the charge in nature is reproduced in theory in the natural way.
Cited references: BARVINSKY AO-1995-J-MATH-PHYS-V36-P30
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
DEWITT BS-1965-DYNAMICAL-THEORY-GRO
DEWITT BS-1975-PHYS-REP-C-V19-P297
LIPATOV LN-1977-ZH-EKSP-TEOR-FIZ+-V72-P411
MARTIN A-1986-PHYS-REP-V134-P305
OSBORN TA-1983-J-MATH-PHYS-V24-P1093
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
SCHWINGER J-1951-PHYS-REV-V82-P664
SLOBODENYUK VA-1995-9570-IHEP
SLOBODENYUK VA-1996-MOD-PHYS-LETT-A-V11-P1729
SLOBODENYUK VA-1996-THEOR-MATH-PHYS+-V109-P1302
SLOBODENYUK VA-1995-THEOR-MATH-PHYS+-V105-P1387
SLOBODENYUK VA-1993-Z-PHYS-C-PART-FIELDS-V58-P575
Source item page count: 15
Publication Date: DEC 7
IDS No.: YM362
29-char source abbrev: MOD PHYS LETT A



Record 21 of 100
Author(s): Popov VS; Mur VD; Karnakov BM
Title: The imaginary-time method for relativistic problems
Source: JETP LETTERS 1997, Vol 66, Iss 4, pp 229-235
No. cited references: 17
Addresses: Popov VS, INST THEORET & EXPT PHYS, MOSCOW 117218, RUSSIA.
MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
Abstract: A relativistic version of the imaginary-time method is presented. The method is used to calculate the probability w of ionization of a bound state by electric and magnetic fields of various configurations (including the case when the binding energy E-b is comparable to mc(2)). The formulas cover as limiting cases both the ionization of nonrelativistic bound systems (atoms and ions) and the case E-b=2mC(2), when w equals the probability of electron-positron pair production from the vacuum in the presence of a strong field. (C) 1997 American Institute of Physics.
Cited references: ANDREEV SP-1985-JETP-LETT+-V42-P190
BARGMANN V-1959-PHYS-REV-LETTERS-V2-P435
DEMKOV YN-1965-SOVIET-PHYSICS-JETP-V20-P614
GREINER W-1985-QUANTUM-ELECTRODYNAM
KARNAKOV BM-1997-JETP-LETT+-V65-P405
LANDAU LD-1988-CLASSICAL-THEORY-FIE
LANDAU LD-1974-QUANTUM-MECHANICS
MARINOV MS-1972-SOV-J-NUCL-PHYS+-V15-P702
PERELOMOV AM-1967-ZH-EKSP-TEOR-FIZ+-V24-P207
PIEPER W-1969-Z-PHYS-V218-P327
POPOV VS-1996-JETP-LETT+-V63-P417
POPOV VS-1997-PHYS-LETT-A-V225
POPOV VS-1972-SOV-J-NUCL-PHYS-V14-P673
POPOV VS-1968-SOV-PHYS-JETP-V26-P222
SCHWINGER J-1951-PHYS-REV-V82-P664
SCHWINGER J-1964-QUANTUM-ELECTRODYNAM
ZELDOVICH YB-1970-SOV-PHYS-USP-V12-P235
Source item page count: 7
Publication Date: AUG 25
IDS No.: XY034
29-char source abbrev: JETP LETT-ENGL TR



Record 22 of 100
Author(s): Suvernev AA; Goodson DZ
Title: Dimensional perturbation theory for vibration-rotation spectra of linear triatomic molecules
Source: JOURNAL OF CHEMICAL PHYSICS 1997, Vol 107, Iss 11, pp 4099-4111
No. cited references: 70
Addresses: Suvernev AA, SO METHODIST UNIV, DEPT CHEM, DALLAS, TX 75275.
KeywordsPlus: EXCITED ROVIBRATIONAL STATES; LARGE-ORDER; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; FLOPPY MOLECULES; 2-ELECTRON ATOMS; 1/N EXPANSION; EIGENVALUES; ENERGIES; OSCILLATORS
Abstract: A very efficient large-order perturbation theory is formulated for the nuclear motion of a linear triatomic molecule. All coupling between vibration and rotation is included. To demonstrate the method, all of the experimentally observed rotational energies, with values of J almost up to 100, for the ground and first excited vibrational states of CO2 and for the ground vibrational states of N2O and of OCS are calculated. The perturbation expansions reported here are rapidly convergent. The perturbation parameter is D-1/2, where D is the dimensionality of space. Increasing D is qualitatively similar to increasing the angular momentum quantum number J. Therefore, this approach is especially suited for states with high rotational excitation. The computational cost of the method scales only in proportion to JN(nu)(5/3), where N-nu is the size of the vibrational basis set. (C) 1997 American Institute of Physics.
Cited references: ALLEN HC-1963-MOL-VIB-ROTORS-P51
BACIC Z-1989-ANNU-REV-PHYS-CHEM-V40-P469
BELOV AA-1990-SOV-PHYS-JETP-V71-P12
BELOV AA-1988-SOV-PHYS-JETP-V67-P2413
BENDER CM-1978-ADV-MATH-METHODS-SCI-P89
BENDER CM-1973-PHYS-REV-D-V7-P1620
BOWMAN JM-1991-J-CHEM-PHYS-V94-P454
BOWMAN JM-1978-J-CHEM-PHYS-V68-P608
CARNEY GD-1978-ADV-CHEM-PHYS-V37-P305
CARTER S-1983-MOL-PHYS-V49-P745
CHANG J-1986-J-CHEM-PHYS-V84-P4997
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHEDIN A-1979-J-MOL-SPECTROSC-V76-P430
CHEN CL-1985-J-CHEM-PHYS-V83-P1795
CIZEK J-1993-J-CHEM-PHYS-V99-P7331
COHEN JM-1996-INT-J-QUANTUM-CHEM-V59-P445
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P266
DUNN M-1996-J-CHEM-PHYS-V104-P9870
DUNN M-1994-J-CHEM-PHYS-V101-P5987
EDMONDS AR-1957-ANGULAR-MOMENTUM-QUA-P62
ESTES D-1986-MOL-PHYS-V59-P569
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GERBER RB-1988-ADV-CHEM-PHYS-V70-P97
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1997-PHYS-REV-A-V55-P4155
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
HANDY NC-1987-MOL-PHYS-V61-P207
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P61
HERSCHBACH DR-1996-INT-J-QUANTUM-CHEM-V57-P295
HERZBERG G-1966-MOL-SPECTRA-MOL-STRU-V2-P276
HUCKEL W-1950-STRUCTURAL-CHEM-INOR-V1-P432
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1996-NEW-METHODS-QUANTUM-P55
KILLINGBECK J-1981-J-PHYS-A-MATH-GEN-V14-P1005
KIVELSON D-1952-J-CHEM-PHYS-V20-P1575
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1996-NEW-METHODS-QUANTUM-P33
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
LOUCK J-1960-J-MOL-SPECTROSC-V3-P673
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
MORALES DA-1989-CHEM-PHYS-LETT-V161-P253
NAUTS A-1984-PHYS-REV-A-V30-P872
NIELSEN HH-1951-REV-MOD-PHYS-V23-P90
PAPOUSEK D-1982-MOL-VIBRATIONAL-ROTA-P57
PARLETT BN-1980-SYMMETRIC-EIGENVALUE-P119
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1992-SOV-PHYS-JETP-V75-P787
ROTHMAN LS-1992-J-QUANT-SPECTROSC-RA-V48-P469
SIBERT EL-1988-J-CHEM-PHYS-V88-P4378
SUTCLIFFE BT-1982-CURRENT-ASPECTS-QUAN-P99
SUVERNEV AA-1997-CHEM-PHYS-LETT-V269-P177
SUVERNEV AA-1997-J-CHEM-PHYS-V106-P2681
TENNYSON J-1989-J-CHEM-PHYS-V91-P3815
TENNYSON J-1986-MOL-PHYS-V58-P1067
TENNYSON J-1990-PHILOS-T-ROY-SOC-A-V332-P329
TOWNES CH-1955-MICROWAVE-SPECTROSCO-P624
TSIPIS CA-1996-NEW-METHODS-QUANTUM
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
VARSHALOVICH DA-1988-QUANTUM-THEORY-ANGUL-PCH4
WATSON DK-1995-PHYS-REV-A-V51-PR5
WILSON EB-1936-J-CHEM-PHYS-V4-P262
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 13
Publication Date: SEP 15
IDS No.: XW119
29-char source abbrev: J CHEM PHYS



Record 23 of 100
Author(s): Perrot F; Grimaldi A
Title: Linear response of a magnetized electron gas: Application to the thermodynamics of aluminium
Source: JOURNAL OF PHYSICS-CONDENSED MATTER 1997, Vol 9, Iss 32, pp 6845-6867
No. cited references: 68
Addresses: Perrot F, CEA, CTR ETUD LIMEIL VALENTON, F-94195 VILLENEUVE ST GEO, FRANCE.
KeywordsPlus: DENSITY-FUNCTIONAL THEORY; GROUND-STATE ENERGIES; HYDROGEN-ATOM; THOMAS-FERMI; ARBITRARY STRENGTH; EXCITED-STATES; LANDAU STATES; FIELD; SYSTEMS; TRANSITIONS
Abstract: We first consider the three independent functions that describe the linear response to external perturbations of a non-interacting strongly magnetized electron gas. These functions are needed to build the interacting response to an external perturbation, even if it is purely scalar. The interacting response function is obtained in the local density approximation for the exchange and correlation energy functional E-xc(1)(n, omega). It is singular when the non-interacting Fermi level coincides with a Landau band edge. In addition, the numerical study of the effective local-field factor shows that the response function can also have poles in a region of densities and magnetic fields approximately defined by: r(s) > 3.5 and 0.3 greater than or equal to B/B-0 greater than or equal to 0.1, where B-0 is the reference magnetic held (1 atomic unit = 2.35 x 10(9) Gauss). Outside this region, we use the linear response theory applied to a model electron-ion interaction for an estimate of the equation of state of solid aluminium in the presence of strong magnetic fields up to B = B-0. The densities are in the range 0.8-1.5 times the normal density. The results show the importance of the changes induced by the magnetic field, in particular those associated with the localization of the charge density.
Cited references: AMOVILLI C-1991-PHYS-REV-A-V43-P2528
BALLA K-1996-J-PHYS-A-MATH-GEN-V29-P6747
BANERJEE B-1974-PHYS-REV-D-V10-P2384
BARCZA S-1996-J-PHYS-A-MATH-GEN-V29-P6765
BEZCHASTNOV VG-1995-J-PHYS-B-AT-MOL-OPT-V28-P167
BEZCHASTNOV VG-1994-J-PHYS-B-AT-MOL-OPT-V27-P3349
BOEBINGER G-1996-PHYSICS-TODAY-JUN-P36
BOEBINGER G-1996-PHYSICS-TODAY-OCT-P11
BYLICKI M-1994-J-PHYS-B-AT-MOL-OPT-V27-P2741
CHAKRABORTY T-1992-COMMENTS-CONDENS-MAT-V16-P35
CHEN ZH-1992-PHYS-REV-A-V45-P1722
CHIU KW-1974-PHYS-REV-B-V9-P4724
CHUU DS-1993-PHYS-REV-A-V48-P4175
DELANDE D-1991-PHYS-REV-LETT-V66-P141
FELBER FS-1988-PHYS-FLUIDS-V31-P2053
GLASSER ML-1972-ANN-PHYS-NEW-YORK-V73-P1
GLASSER ML-1983-PHYS-REV-B-V28-P4387
GLOSSMAN MD-1988-J-PHYS-B-AT-MOL-OPT-V21-P411
GRADSHTEYN IS-1965-TABLES-INTEGRALS-SER
GRAYCE CJ-1994-PHYS-REV-A-V50-P3089
GREENE MP-1969-PHYS-REV-V177-P1019
HEINE V-1964-PHIL-MAG-V9-P451
HEINE V-1965-PHILOSOPHICAL-MAG-V12-P529
JONES MD-1996-PHYS-REV-A-V54-P219
JONES W-1971-J-PHYS-C-V4-P1322
KADOMTSEV BB-1970-ZH-EKSP-TEOR-FIZ+-V31-P945
KAPPES U-1995-PHYS-REV-A-V51-P4542
KASTNER MA-1992-REV-MOD-PHYS-V64-P849
KRAVCHENKO YP-1996-PHYS-REV-A-V54-P287
KRAVCHENKO YP-1996-PHYS-REV-LETT-V77-P619
LAI D-1996-PHYS-REV-A-V53-P152
LANDAU LD-1980-COURSE-THEORETICAL-P
LANDAU LD-1959-QUANTUM-MECHANICS
LEHMANN H-1995-PURE-APPL-CHEM-V67-P457
LEVIN FS-1985-PHYS-REV-A-V32-P3285
LI S-1990-PHYS-REV-A-V41-P2344
LIBERMAN MA-1994-MEGAGAUSS-MAGNETIC-F-P271
LIBERMAN MA-1994-MEGAGAUSS-MAGNETIC-F-P281
LIBERMAN MA-1995-SOV-PHYS-USP-V38-P117
LIEB EH-1992-PHYS-REV-LETT-V69-P749
MIURA N-1994-MEGAGAUSS-MAGNETIC-F-P125
MUELLER RO-1971-PHYS-REV-LETT-V26-P1136
MUSTAFA O-1994-PHYS-REV-A-V50-P2926
NEUHAUSER D-1987-PHYS-REV-A-V36-P4163
NOZIERES P-1966-THEORY-QUANTUM-LIQUI
ORTIZ G-1995-PHYS-REV-A-V52-PR3405
PAVLOV GG-1995-ASTROPHYS-J-V450-P883
PERROT F-1995-J-PHYS-CONDENS-MATT-V7-P654
POPOV VS-1996-JETP-LETT+-V63-P417
PRANGE RE-1990-QUANTUM-HALL-EFFECT
RELOVSKY BM-1995-INT-J-QUANTUM-CHEM-V56-P825
RELOVSKY BM-1996-PHYS-REV-A-V53-P4068
RUDER H-1994-ATOMS-STRONG-MAGNETI
SAINI S-1987-PHYS-REV-A-V36-P3556
SHERTZER J-1989-PHYS-REV-A-V39-P3833
SKJERVOLD JE-1984-PHYS-SCRIPTA-V29-P448
SKUDLARSKI P-1993-PHYS-REV-B-V48-P8547
SKUDLARSKI P-1992-PHYS-REV-LETT-V69-P949
THURNER G-1993-J-PHYS-B-AT-MOL-OPT-V26-P4719
TOMISHIMA Y-1982-J-PHYS-B-AT-MOL-OPT-V15-P2837
TOMISHIMA Y-1979-PROG-THEOR-PHYS-V62-P853
TOMISHIMA Y-1978-PROG-THEOR-PHYS-V59-P683
VIGNALE G-1992-PHYS-REV-B-V46-P10232
VIGNALE G-1988-PHYS-REV-B-V37-P10685
WANG JH-1995-PHYS-REV-A-V52-P4508
WUNNER G-1987-PHYS-SCRIPTA-V36-P291
YONEI K-1990-J-PHYS-SOC-JPN-V59-P3571
ZANG JX-1994-PHYS-REV-A-V50-P861
Source item page count: 23
Publication Date: AUG 11
IDS No.: XQ903
29-char source abbrev: J PHYS-CONDENS MATTER



Record 24 of 100
Author(s): Preobrazhenskii MA
Title: Exact nonrelativistic expressions for the tensor for scattering of light by atoms
Source: JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 1997, Vol 84, Iss 3, pp 448-456
No. cited references: 22
Addresses: Preobrazhenskii MA, VORENEZH STATE ACAD ARCHITECTURE & CIVIL ENGN, VORONEZH 394000, RUSSIA.
Abstract: Exact nonrelativistic analytical expressions are derived for dipole two-photon transitions between arbitrary multiplets of the hydrogen atom and positive hydrogenlike ions. The result is expressed in terms of a single Gauss hypergeometric function and polynomials whose degrees increase linearly with the number of nodes of the bound states of the quantum system. The cross sections of elastic scattering of light by K- and L-shells of the hydrogen atom are given as an example. It is demonstrated that by expanding the discrete-spectrum wave functions in ultraspherical polynomials it is also possible to obtain analytical expressions of the cross sections of two-photon transitions between states described by the Simons model potential. The basis consisting of Chebyshev polynomials is shown to be the best expansion basis, and the coefficients of such an expansion are given for a broad range of parameters of the problem. Calculation of the polarizability of the SS-state of the rubidium atom is chosen as an example. Finally, the results are compared with the experimental data and the theoretical results of other researchers. (C) 1997 American Institute of Physics. (C) 1997 American Institute of Physics.
Cited references: AKHIEZER AI-1974-QUANTUM-ELECTRODYNAM
AMUSYA MY-1973-SOV-PHYS-JETP-V36-P468
BEIGMAN IL-1994-PHYS-REV-A-V49-P5883
BERGMAN IL-1991-SOV-PHYS-JETP-V73-P68
BONIN KD-1993-PHYS-REV-A-V47-P999
DELONE NB-1982-SOV-PHYS-JETP-V56-P1170
EPSTEIN IR-1970-J-CHEM-PHYS-V53-P1881
ERDELYI A-1953-HIGHER-TRANSCENDENTA
GAVRILA M-1967-PHYS-REV-V163-P147
KELLY HP-1969-PHYS-REV-V182-P84
LANCZOS C-1956-APPLIED-ANAL
MANAKOV NL-1976-J-PHYS-B-ATOM-MOL-PH-V10-P569
MANAKOV NL-1989-SOV-PHYS-JETP-V68-P451
MARINESCU M-1994-PHYS-REV-A-V49-P5103
MOORE CE-1950-488-NBS
PREOBRAZHENSKII MA-1993-LASER-PHYS-V3-P688
PREOBRAZHENSKII MA-1994-OPT-SPECTROSC-V77-P494
RAPOPORT LP-1978-THEORY-MULTIPHOTON-P
RITUS VT-1967-ZH-EKSP-TEOR-FIZ+-V24-P1041
SOBELMAN II-1973-INTRO-THEORY-ATOMIC
VAINBERG VM-1986-JETP-LETT+-V44-P9
YAKHONTOV VL-1966-EUR-C-ABSTR-P74
Source item page count: 9
Publication Date: MAR
IDS No.: XH056
29-char source abbrev: J EXP THEOR PHYS



Record 25 of 100
Author(s): Ivanov IA
Title: Stark effect in hydrogen: Reconstruction of the complex ground-state energy from the coefficients of an asymptotic perturbation expansion
Source: PHYSICAL REVIEW A 1997, Vol 56, Iss 1, pp 202-207
No. cited references: 36
Addresses: Ivanov IA, RUSSIAN ACAD SCI, INST SPECT, TROITSK 142092, MOSCOW REGION, RUSSIA.
KeywordsPlus: RAYLEIGH-RITZ FORMALISM; ELECTRIC-FIELD; ATOMIC-HYDROGEN; RESONANCES; IONIZATION; EIGENVALUES; SERIES; REAL; PHOTOIONIZATION; APPROXIMANTS
Abstract: We consider the Stark effect for the ground state of hydrogen. Using the Borel summability of the Rayleigh-Schrodinger perturbation expansion we sum it about the pure imaginary field strength E = iF, F is real. As a result we obtain the series converging for small values of F. We give arguments that this series converges for all positive finite values of F. The series obtained can be continued analytically back to the real field strength region. This method allows one to obtain accurate results for the hydrogenic Stark resonances with slight computational effort.
Cited references: ALEXANDER MH-1969-PHYS-REV-V178-P34
ALVAREZ G-1994-PHYS-REV-A-V50-P4679
ALVAREZ G-1991-PHYS-REV-A-V44-P3060
BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BERGEMAN T-1984-PHYS-REV-LETT-V53-P775
BRANDAS E-1977-PHYS-REV-A-V16-P2207
CALICETI E-1993-COMMUN-MATH-PHYS-V157-P347
CALICETI E-1986-COMMUN-MATH-PHYS-V104-P163
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
FERNANDEZ FM-1996-PHYS-REV-A-V54-P1206
FIKHTENGOLTS GM-1992-LEKTCII-DIFFERENTCIA
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GRADSHTEYN IS-1965-TABLES-INTEGRALS-SER
GRAFFI S-1978-COMMUN-MATH-PHYS-V62-P83
HEHENBERM-1974-PHYS-REV-A-V10-P1494
HERBST IW-1978-PHYS-REV-LETT-V41-P67
HIRSCHFELDER JO-1971-J-CHEM-PHYS-V55-P1395
LOEFFEL JJ-1990-LARGE-ORDER-BEH-PERT-P524
MAQUET A-1983-PHYS-REV-A-V27-P2946
POPOV VS-1990-PHYS-LETT-A-V149-P418
PRIVMAN V-1980-PHYS-REV-A-V22-P1833
PRUDNIKOV AP-1981-INTEGRALY-RYADY
REINHARDT WP-1982-INT-J-QUANTUM-CHEM-V21-P133
REINHARDT WP-1976-INT-J-QUANTUM-CHEM-S-V10-P359
ROTTKE H-1986-PHYS-REV-A-V33-P301
SIEGERT AFJ-1939-PHYS-REV-V56-P750
SILVERMAN JN-1988-CHEM-PHYS-LETT-V153-P61
SILVERMAN JN-1986-CHEM-PHYS-LETT-V128-P466
SILVERMAN JN-1988-PHYS-REV-A-V37-P1208
SILVERSTONE HJ-1986-INT-J-QUANTUM-CHEM-V29-P261
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
SIMON B-1973-ANN-MATH-V97-P247
STEBBINGS RF-1976-SCIENCE-V193-P537
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
TITCHMARSH EC-1958-EIGENFUNCTION-EXPANS
Source item page count: 6
Publication Date: JUL
IDS No.: XL645
29-char source abbrev: PHYS REV A



Record 26 of 100
Author(s): Goodson DZ
Title: Self-consistent-field perturbation theory for the Schrodinger equation
Source: PHYSICAL REVIEW A 1997, Vol 55, Iss 6, pp 4155-4163
No. cited references: 57
Addresses: Goodson DZ, SO METHODIST UNIV, DEPT CHEM, DALLAS, TX 75275.
KeywordsPlus: LARGE-DIMENSION LIMIT; COMPLEX ENERGY EIGENVALUES; QUANTUM-MECHANICS; 2-ELECTRON ATOMS; COORDINATE SEPARATION; EXCITED-STATES; SYSTEMS; EXPANSION; HELIUM
Abstract: A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schrodinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.
Cited references: AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BOWMAN JM-1986-ACCOUNTS-CHEM-RES-V19-P202
CARNEY GD-1988-J-CHEM-SOC-FARAD-T-2-V84-P1277
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHRISTOFFEL KM-1982-CHEM-PHYS-LETT-V85-P220
CIZEK J-1993-J-CHEM-PHYS-V99-P7331
COHEN JM-1996-INT-J-QUANTUM-CHEM-V59-P445
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DUNN M-1996-J-CHEM-PHYS-V104-P9870
DUNN M-1994-J-CHEM-PHYS-V101-P5987
ELOUT MO-UNPUB
FARRELLY D-1994-CHEM-PHYS-LETT-V217-P520
FARRELLY D-1986-J-CHEM-PHYS-V84-P6285
FOCK V-1930-Z-PHYSIK-V61-P126
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GERBER RB-1988-ADV-CHEM-PHYS-V70-P97
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-THESIS-HARVARD-U
GOODSON DZ-1993-DIMENSIONAL-SCALING-P359
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1996-NEW-METHODS-QUANTUM-P71
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HARTREE DR-1928-P-CAMBRIDGE-PHIL-SOC-V24-P89
HARTREE DR-1928-P-CAMBRIDGE-PHIL-SOC-V24-P111
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P61
HERSCHBACH DR-1996-INT-J-QUANTUM-CHEM-V57-P295
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HERZBERG G-1945-MOL-SPECTRA-MOL-STRU-P109
LIN CD-1974-PHYS-REV-A-V10-P1986
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1996-NEW-METHODS-QUANTUM-P1
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MACEK J-1968-J-PHYSICS-B-V1-P831
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1982-PROGR-PARTICLE-NUCL-V8-P387
MUJICA V-1987-CHEM-PHYS-V112-P159
MUR VD-1990-SOV-PHYS-JETP-V70-P16
POPOV VS-1994-PHYS-LETT-A-V193-P165
SERGEEV AV-1989-SOV-J-NUCL-PHYS+-V50-P589
SERGEEV AV-UNPUB
SERGEV AV-IN-PRESS-INT-J-QUANT
SLATER JC-1930-PHYS-REV-V35-P210
SLATER JC-1929-PHYS-REV-V34-P1293
SLATER JC-1960-QUANTUM-THEORY-ATOMI-V1-P219
SUVERNEV AA-IN-PRESS-CHEM-PHYS-L
SUVERNEV AA-1997-J-CHEM-PHYS-V106-P2681
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TOBIN FL-1980-CHEM-PHYS-V47-P151
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VANDERMERWE PD-1988-PHYS-REV-A-V38-P1187
WATSON DK-1995-PHYS-REV-A-V51-PR5
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 9
Publication Date: JUN
IDS No.: XE372
29-char source abbrev: PHYS REV A



Record 27 of 100
Author(s): Popov VS; Karnakov BM; Mur VD
Title: Quasiclassical theory of atomic ionization in electric and magnetic fields
Source: PHYSICS LETTERS A 1997, Vol 229, Iss 5, pp 306-312
No. cited references: 44
Addresses: Popov VS, INST THEORET & EXPT PHYS, RU-117259 MOSCOW, RUSSIA.
MOSCOW STATE PHYS ENGN INST, RU-115409 MOSCOW, RUSSIA.
Author Keywords: ionization of atoms; quasiclassics; imaginary time method
KeywordsPlus: ORDER PERTURBATION-THEORY; HYDROGEN-ATOM; MULTIDIMENSIONAL PROBLEMS; RYDBERG ATOMS; 1/N-EXPANSION; THRESHOLD
Abstract: Using the ''imaginary time'' method we have calculated (in the quasiclassical approximation) the probability of ionization of the atomic s-state in static electric and magnetic fields. The Coulomb interaction between the emitted electron and the atomic remainder is taken into account. The results obtained are valid for external fields E and H which are smaller than characteristic atomic fields. The case of mutually orthogonal fields (the Lorentz ionization) is carefully studied. (C) 1997 Elsevier Science B.V.
Cited references: ANDREEV SP-1985-PISMA-ESKP-TEOR-FIZ-V42-P154
ANDREYEV SP-1984-ZH-EKSP-TEOR-FIZ+-V86-P866
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
CHU MC-1984-PHYS-REV-A-V29-P675
CHU MC-1983-PHYS-REV-A-V28-P1423
DAMBURG RJ-1978-J-PHYS-B-AT-MOL-OPT-V11-P1921
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
DEMKOV YN-1964-ZH-EKSP-TEOR-FIZ-V47-P918
DRUKAREV GF-1971-ZH-EKSP-TEOR-FIZ-V61-P956
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GORKOV LP-1967-ZH-EKSP-TEO-V53-P717
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
KELDYSH LV-1964-ZH-EKSP-TEOR-FIZ-V47-P1945
KOLOSOV VV-1989-J-PHYS-B-AT-MOL-OPT-V22-P833
KOTOVA LP-1968-ZH-EKSP-TEOR-FIZ-V54-P1151
LANDAU LD-1977-QUANTUM-MECHANICS
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MAGARILL LI-1971-ZH-EKSP-TEOR-FIZ-V60-P175
MAIN J-1994-J-PHYS-B-AT-MOL-OPT-V27-P2835
MANAKOV NL-1986-ZH-EKSP-TEOR-FIZ+-V91-P404
MELEZHIK VS-1993-PHYS-REV-A-V48-P4528
NIKISHOV AI-1967-ZH-EKSP-TEO-V52-P223
NIKISHOV AI-1966-ZH-EKSP-TEOR-FIZ-V50-P255
PERELOMOV AM-1966-ZH-EKSP-TEO-V51-P309
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V50-P1393
PERELOMOV AM-1967-ZHETF-V52-P514
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1994-ZH-EKSP-TEOR-FIZ+-V105-P568
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
SEIPP I-1996-J-PHYS-B-AT-MOL-OPT-V29-P1
SMIRNOV BM-1965-ZHETF-V49-P841
SOLOVEV EA-1983-ZH-EKSP-TEOR-FIZ+-V85-P109
TURBINER AV-1989-ZH-EKSP-TEOR-FIZ+-V95-P1152
TURBINER AV-1983-ZH-EKSP-TEOR-FIZ+-V84-P1329
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1986-PISMA-ZH-EKSP-TEOR-F-V44-P9
WEINBERG VM-1990-ZH-EKSP-TEOR-FIZ-V98-P847
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
YAMABE T-1977-PHYS-REV-A-V16-P877
Source item page count: 7
Publication Date: MAY 26
IDS No.: XA531
29-char source abbrev: PHYS LETT A



Record 28 of 100
Author(s): Karnakov BM; Mur VD; Popov VS
Title: Contribution to the theory of Lorentzian ionization
Source: JETP LETTERS 1997, Vol 65, Iss 5, pp 405-411
No. cited references: 13
Addresses: Karnakov BM, TECH UNIV, MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
INST THEORET & EXPT PHYS, MOSCOW 117259, RUSSIA.
Abstract: The probability w(L) of Lorentzian ionization, which arises when an atom or ion moves in a constant magnetic held, is calculated in the quasiclassical approximation. The nonrelativistic (upsilon less than or similar to e(2)/(h) over bar = 1, upsilon is the velocity of the atom) and ultrarelativistic (upsilon --> c = 137) cases are examined and the stabilization factor S, which takes account of the effect of the magnetic field on tunneling of an electron, is found. (C) 1997 American Institute of Physics.
Cited references: BITTER D-1965-SCI-AM-V213-P65
DELONE NB-1985-ATOMS-STRONG-LIGHT-F
GREINER W-1985-QUANTUM-ELECTRODYNAM
KELDYSH LV-1965-ZH-EKSP-TEOR-FIZ+-V20-P1307
KOTOVA LP-1968-SOV-PHYS-JETP-V27-P616
PAVLOVSKII AI-1995-SCI-WORKS-P85
PERELOMOV AM-1967-ZH-EKSP-TEOR-FIZ+-V24-P207
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V23-P924
POPOV VS-1996-JETP-LETT+-V63-P417
SAKHAROV AD-1995-SCI-WORKS
SAKHAROV AD-1966-SOV-PHYS-DOKL-V10-P1045
SCHWINGER J-1951-PHYS-REV-V82-P664
ZELDOVICH YB-1972-SOV-PHYS-USP-V14-P673
Source item page count: 7
Publication Date: MAR 10
IDS No.: WT775
29-char source abbrev: JETP LETT-ENGL TR



Record 29 of 100
Author(s): Rao JG; Li BW
Title: Theoretical calculations of Rydberg stark effect of hydrogen atom
Source: COMMUNICATIONS IN THEORETICAL PHYSICS 1997, Vol 27, Iss 1, pp 9-14
No. cited references: 13
Addresses: Rao JG, CHINESE ACAD SCI, LAB MAGNET RESONANCE & ATOM & MOL PHYS, WUHAN 430071, PEOPLES R CHINA.
CHINESE ACAD SCI, WUHAN INST PHYS, WUHAN 430071, PEOPLES R CHINA.
CCAST, WORLD LAB, BEIJING 100080, PEOPLES R CHINA.
KeywordsPlus: B-SPLINE APPROACH; MAGNETIC-FIELD; PHOTOIONIZATION; SPECTRUM; STATES
Abstract: The Stark shifts and widths of the highly excited states near the classical ionization threshold of a hydrogen atom are calculated by the B spline technique plus complex scaling method. The Lanczos method has been used in our calculations and is proved to be powerful. Our results are in agreement with the experimental results and theoretical ones obtained by other methods. The method can also be used to calculate the same problem for atoms in parallel and cross electric and magnetic fields.
Cited references: DEBOOR C-1978-PRACTICAL-GUIDE-SPLI
DELANDE D-1991-PHYS-REV-LETT-V66-P141
ERICSSON T-1980-MATH-COMPUT-V35-P1251
FISHER CF-1990-J-COMPUT-PHYS-V90-P489
GLAB WL-1985-PHYS-REV-A-V31-P3677
HARMIN DA-1982-PHYS-REV-LETT-V49-P128
JOHNSON WR-1988-PHYS-REV-A-V37-P307
LIU WY-1993-PHYS-REV-A-V47-P3151
NG K-1987-PHYS-REV-A-V35-P2508
POPOV VS-1990-PHYS-LETT-A-V149-P418
RAO JG-1994-PHYS-REV-A-V50-P1916
REHARDT WP-1982-ANNU-REV-PHYS-CHEM-V33-P223
XI JH-1992-PHYS-REV-A-V46-P3151
Source item page count: 6
Publication Date: JAN 30
IDS No.: WP252
29-char source abbrev: COMMUN THEOR PHYS



Record 30 of 100
Author(s): Suvernev AA; Goodson DZ
Title: Perturbation theory for coupled anharmonic oscillators
Source: JOURNAL OF CHEMICAL PHYSICS 1997, Vol 106, Iss 7, pp 2681-2684
No. cited references: 24
Addresses: Suvernev AA, SO METHODIST UNIV, DEPT CHEM, DALLAS, TX 75275.
KeywordsPlus: BOUND-STATES; EIGENVALUES; MOLECULES; QUANTIZATION; VIBRATIONS; EXPANSION; EQUATION; DYNAMICS
Abstract: Perturbation theory is applied to a pair of coupled oscillators with cubic anharmonicity. Large-order perturbation theory is shown to be more efficient computationally than numerical diagonalization of the Hamiltonian. Quadratic Pade summation of the energy expansions yields convergent results for the real and the imaginary parts of resonance eigenvalues. (C) 1997 American Institute of Physics.
Cited references: ACTON FS-1970-NUMERICAL-METHODS-WO-P332
BACIC Z-1989-ANNU-REV-PHYS-CHEM-V40-P469
BAKER GA-1996-PADE-APPROXIMANTS-1
BOWMAN JM-1991-J-CHEM-PHYS-V94-P454
CHANG J-1986-J-CHEM-PHYS-V84-P4997
DAVIS MJ-1981-J-CHEM-PHYS-V75-P246
DUNN M-IN-PRESS-J-CHEM-PHYS
DUNN M-1994-J-CHEM-PHYS-V101-P5987
EASTES W-1974-J-CHEM-PHYS-V61-P4301
FORD J-1973-ADV-CHEM-PHYS-V24-P155
FRIED LE-1989-J-CHEM-PHYS-V90-P6378
FRIED LE-1987-J-CHEM-PHYS-V86-P6270
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GOODSON DZ-1988-CHEM-PHYS-LETT-V151-P557
HIRSCHFELDER JO-1964-ADVAN-QUANTUM-CHEM-V1-P255
JAFFE C-1982-J-CHEM-PHYS-V77-P5191
KAIS S-1993-J-CHEM-PHYS-V98-P3990
LAWTON RT-1979-MOL-PHYS-V37-P1799
PARLETT BN-1980-SYMMETRIC-EIGENVALUE-P119
SHAFER RE-1972-SIAM-J-NUMER-ANAL-V11-P447
SIBERT EL-1988-J-CHEM-PHYS-V88-P4378
STEFANSKI K-1987-J-CHEM-PHYS-V87-P1079
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
Source item page count: 4
Publication Date: FEB 15
IDS No.: WH024
29-char source abbrev: J CHEM PHYS



Record 31 of 100
Author(s): Germann TC; Kais S
Title: Dimensional perturbation theory for Regge poles
Source: JOURNAL OF CHEMICAL PHYSICS 1997, Vol 106, Iss 2, pp 599-604
No. cited references: 26
Addresses: Germann TC, UNIV CALIF BERKELEY, DEPT CHEM, BERKELEY, CA 94720.
PURDUE UNIV, DEPT CHEM, W LAFAYETTE, IN 47907.
KeywordsPlus: CIRCULAR RYDBERG STATES; SEMICLASSICAL CALCULATION; VARIABLE DIMENSIONALITY; 2-ELECTRON ATOMS; MAGNETIC-FIELD; QUANTUM; POSITIONS; RESIDUES; TRAJECTORIES; POTENTIALS
Abstract: We apply dimensional perturbation theory to the calculation of Regge pole positions, providing a systematic improvement to earlier analytic first-order results. We consider the orbital angular momentum l as a function of spatial dimension D for a given energy E, and expand l in inverse powers of kappa=(D-1)/2. It is demonstrated for both bound and resonance states that the resulting perturbation series often converges quite rapidly, so that accurate quantum results can be obtained via simple analytic expressions given here through third order. For the quartic oscillator potential, the rapid convergence of the present l(D;E) series is in marked contrast with the divergence of the more traditional E(D;l) dimensional perturbation series, thus offering an attractive alternative for bound state problems. (C) 1997 American Institute of Physics.
Cited references: BOSANAC S-1978-J-MATH-PHYS-V19-P789
CONNOR JNL-COMMUNICATION
CONNOR JNL-1990-J-CHEM-SOC-FARADAY-T-V86-P1627
CONNOR JNL-1979-J-PHYS-B-AT-MOL-OPT-V12-PL515
CONNOR JNL-1976-J-PHYS-B-AT-MOL-OPT-V9-P1783
DELOS JB-1975-PHYS-REV-A-V11-P210
DUNN M-1994-J-CHEM-PHYS-V101-P5987
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-J-PHYS-B-AT-MOL-OPT-V28-PL531
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KOBYLINSKY NA-1990-PHYS-LETT-B-V235-P182
PAJUNEN P-1988-J-CHEM-PHYS-V88-P4268
POPOV VS-1987-PHYS-LETT-A-V124-P77
SOKOLOVSKI D-1995-J-CHEM-PHYS-V103-P5979
SUKUMAR CV-1975-J-PHYS-B-AT-MOL-OPT-V8-P568
TAYLOR JR-1972-SCATTERING-THEORY-P302
THYLWE KE-1989-LECTURE-NOTES-PHYSIC-V325-P281
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
Source item page count: 6
Publication Date: JAN 8
IDS No.: WB843
29-char source abbrev: J CHEM PHYS



Record 32 of 100
Author(s): Dunn M; Watson DK
Title: Continuation of the Schrodinger equation for higher angular-momentum states to D dimensions and interdimensional degeneracies
Source: FEW-BODY SYSTEMS 1996, Vol 21, Iss 3-4, pp 187-209
No. cited references: 151
Addresses: Dunn M, UNIV OKLAHOMA, DEPT PHYS & ASTRON, NORMAN, OK 73019.
KeywordsPlus: DOUBLY-EXCITED-STATES; MOLECULAR-ORBITAL DESCRIPTION; SHIFTED 1/N EXPANSION; HELIUM ISOELECTRONIC SEQUENCE; ROTATING MORSE OSCILLATOR; BARRIER STARK RESONANCES; QUASI-STATIONARY STATES; UNIFORM MAGNETIC-FIELD; WEAKLY-BOUND SYSTEMS; LARGE-N EXPANSIONS
Abstract: The application of the techniques of dimensional scaling, and in particular the 1/D expansion, to higher angular-momentum states of multielectron atoms requires the generalized Euler angles, which multiply with increasing D to be ''factored out'' of the wave function. The factorization must be performed in a way that produces from the Schrodinger equation a tractable set of differential equations which admit continuation in the dimension D. In two recent works the authors have achieved the necessary factorization of the wave function by generalizing the Schwartz expansion to N electrons in D dimensions. The present paper applies the N-electron D-dimensional Schwartz expansion to the two-electron problem in D dimensions. The resulting set of coupled differential equations in the internal variables admit continuation in D, enabling the methods of dimensional scaling to be applied to higher-angular-momentum states. In addition, the coupled differential equations clearly show the complete spectrum of exact interdimensional degeneracies of the two-electron system.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
ARTECA GA-1990-LARGE-ORDER-PERTURBA
ATAG S-1988-PHYS-REV-A-V37-P2280
AVERY J-1992-INT-J-QUANTUM-CHEM-V41-P673
AVERY J-1991-INT-J-QUANTUM-CHEM-V39-P657
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAG M-1990-J-PHYS-B-AT-MOL-OPT-V23-P3075
BAG M-1992-PHYS-REV-A-V46-P6059
BAKER JD-1990-PHYS-REV-A-V41-P1247
BENDER CM-1982-PHYS-REV-A-V25-P1305
BERLIN TH-1952-PHYS-REV-V86-P821
BERRY RS-1988-ADV-CHEM-PHYS-V70-P35
BERRY RS-1989-CONTEMP-PHYS-V30-P1
BOERNER H-1963-REPRESENTATIONS-GROU
BOLLE D-1984-PHYS-REV-A-V30-P1279
BOTTCHER C-1994-PHYS-REV-A-V49-P1714
BOYA LJ-1994-PHYS-REV-A-V50-P4397
CARZOLI JC-UNPUB
CASATI G-1996-QUANTUM-CHAOS-V119-P113
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHISHOLM CDH-1976-GROUP-THEORETICAL-TE-PCH8
DIRAC PAM-1930-PRINCIPLES-QUANTUM-M
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1986-J-CHEM-PHYS-V85-P4557
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DUNN M-IN-PRESS-ANN-PHYS-NY
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1990-J-PHYS-B-AT-MOL-OPT-V23-P2435
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
DUNN M-UNPUB-LARGE-DIMENSIO
DUNN M-UNPUB-ORIGIN-EXACT-I
EZRA GS-1991-J-PHYS-B-AT-MOL-OPT-V24-PL413
FEAGIN JM-1988-PHYS-REV-A-V37-P4599
FEAGIN JM-1986-PHYS-REV-LETT-V57-P984
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
FRANTZ DD-1989-PHYS-REV-A-V40-P1175
GANGYOPADHYAY RS-1985-PHYS-REV-D-V32-P3312
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GONZALEZ A-1991-FEW-BODY-SYST-V10-P43
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1993-DIMENSIONAL-SCALING-P359
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOODSON DZ-1991-PHYS-REV-A-V44-P97
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
GRUJIC PV-1995-J-PHYS-B-AT-MOL-OPT-V28-P1159
HAMERMESH M-1989-GROUP-THEORY-ITS-APP-PCH10
HERRICK DR-1983-ADV-CHEM-PHYS-V52-P1
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-J-MATH-PHYS-V16-P1047
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1989-AT-PHYS-V11-P63
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HERSCHBACH DR-1993-DIMENSIONAL-SCALING-P25
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1989-P-WELSCH-FD-CHEM-RES-V32-P95
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HERSHBACH DR-1987-FARADAY-DISC-CHEM-SO-V84-P465
INTHOOFT G-1980-NATO-ADV-STUDY-I-B-V59
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1994-INT-J-QUANTUM-CHEM-V49-P657
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P417
KAIS S-1993-J-CHEM-PHYS-V99-P5184
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1989-J-CHEM-PHYS-V91-P7791
KAIS S-1994-J-PHYS-CHEM-US-V98-P11015
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KELLMAN ME-1994-PHYS-REV-LETT-V73-P2543
KELLMAN ME-1985-PHYS-REV-LETT-V55-P1738
KVENTSEL GF-1981-PHYS-REV-A-V24-P2299
LIN CD-1986-ADV-ATOM-MOL-PHYS-V22-P77
LIN CD-1995-PHYS-REP-V257-P1
LIN CD-1984-PHYS-REV-A-V29-P1019
LIN CD-1993-REV-FUNDAMENTAL-PROC-P357
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3882
LOESER JG-1986-J-CHEM-PHYS-V84-P3893
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MARCH NH-1985-J-MATH-PHYS-V26-P554
MARCH NH-1986-PHYS-REV-A-V34-P5106
MARCH NH-1984-PHYS-REV-A-V30-P2936
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORALES DA-1989-CHEM-PHYS-LETT-V161-P253
MULLER J-1992-PHYS-REV-A-V45-P1471
MUR VD-1990-SOV-PHYS-JETP-V70-P16
MUSTAFA O-1993-J-PHYS-CONDENS-MATT-V5-P1333
MUSTAFA O-1994-PHYS-REV-A-V50-P2926
POPOV VS-1994-JETP-LETT+-V59-P158
POPOV VS-1994-PHYS-LETT-A-V193-P159
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1992-SOV-J-NUCL-PHYS-V54-P968
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P2455
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P4293
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
ROST JM-1992-PHYS-REV-A-V46-P2410
RUDNICK J-1987-SCIENCE-V237-P384
SCHULTZ DR-1994-PHYS-REV-A-V50-P1348
SCHWARTZ C-1961-PHYSICAL-REVIEW-V123-P1700
STANLEY HE-1968-PHYS-REV-V176-P718
STEPANOV SS-1991-SOV-PHYS-JETP-V73-P227
SUKHATME UP-1986-PHYS-REV-D-V33-P1166
SUNG SM-1993-J-PHYS-CHEM-US-V97-P2479
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1987-JETP-LETT+-V46-P225
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
VALONE SM-1994-INT-J-QUANTUM-CHEM-V49-P591
VANDERMERWE PD-1985-J-CHEM-PHYS-V82-P5293
VANDERMERWE PD-1984-J-CHEM-PHYS-V81-P5976
VANDERMERWE PD-1989-PHYS-REV-A-V40-P1785
VANDERMERWE PD-1986-PHYS-REV-A-V34-P3452
VANDERMERWE PDT-1987-PHYS-REV-A-V36-P3446
VARSHNI YP-1993-CAN-J-PHYS-V71-P122
VARSHNI YP-1994-CHEM-PHYS-V188-P197
WATSON DK-1995-PHYS-REV-A-V51-PR5
WEYL H-1939-CLASSICAL-GROUPS
WILSON KG-1983-REV-MOD-PHYS-V55-P583
WINTGEN D-1992-CHAOS-V2-P19
WINTGEN D-1994-PROG-THEOR-PHYS-SUPP-V116-P121
WITTEN E-1980-PHYS-TODAY-V33-P38
YAFFE LG-1983-PHYS-TODAY-V36-P50
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
ZHEN Z-1993-DIMENSIONAL-SCALING-P83
ZHEN Z-1993-DIMENSIONAL-SCALING-P429
ZHENG Z-1993-DIMENSIONAL-SCALING-P230
Source item page count: 23
IDS No.: WC743
29-char source abbrev: FEW-BODY SYST



Record 33 of 100
Author(s): Dunn M; Watson DK
Title: Continuation of the wave function for higher angular momentum states to D dimensions .1. The generalized Schwartz expansion
Source: ANNALS OF PHYSICS 1996, Vol 251, Iss 2, pp 266-318
No. cited references: 311
Addresses: Dunn M, UNIV OKLAHOMA, DEPT PHYS & ASTRON, NORMAN, OK 73019.
KeywordsPlus: SHIFTED 1/N EXPANSION; LARGE-N-EXPANSION; DOUBLY-EXCITED-STATES; MOLECULAR-ORBITAL DESCRIPTION; KLEIN-GORDON EQUATION; INVERSE SCATTERING TRANSFORMATION; HELIUM ISOELECTRONIC SEQUENCE; ROTATING MORSE OSCILLATOR; BARRIER STARK RESONANCES; QUASI-STATIONARY STATES
Abstract: Extending the techniques of dimensional scaling to higher angular momentum states of multi-electron atoms requires the derivation, from the Schrodinger equation, of a tractable set of differential equations which admit continuation in the spatial dimension D. This derivation centers on ''factoring out,'' in D dimensions, the rotational degrees of freedom from the internal degrees of freedom in the wave function. A solution to this problem, by generalizing thr Schwartz expansion (Schwartz, Phys. Rev. 123, 1700 (1961)) to N electrons in D dimensions, is presented. The generalization to systems with particles of arbitrary masses is straightforward. (C) 1996 Academic Press, Inc.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
ALVES NA-1988-J-PHYS-A-MATH-GEN-V21-P3215
ANDREW K-1990-AM-J-PHYS-V58-P1177
ARFKEN G-1985-MATH-METHODS-PHYSICI-P179
ARTECA GA-1990-LARGE-ORDER-PERTURBA
ATAG S-1989-J-MATH-PHYS-V30-P696
ATAG S-1988-PHYS-REV-A-V37-P2280
AU CK-1991-J-PHYS-B-AT-MOL-OPT-V24-P4671
AVAN J-1984-NUCL-PHYS-B-V237-P159
AVAN J-1983-NUCL-PHYS-B-V224-P61
AVAN J-1984-PHYS-REV-D-V29-P2891
AVAN J-1984-PHYS-REV-D-V29-P2904
AVERY J-1993-DIMENSIONAL-SCALING-P139
AVERY J-1992-INT-J-QUANTUM-CHEM-V41-P673
AVERY J-1991-INT-J-QUANTUM-CHEM-V39-P657
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAG M-1990-J-PHYS-B-AT-MOL-OPT-V23-P3075
BAG M-1992-PHYS-REV-A-V46-P6059
BARUT AO-1977-THEORY-GROUP-REPRESE-P291
BELOV AA-1989-PHYS-LETT-A-V142-P389
BELOV AA-1990-SOV-PHYS-JETP-V71-P12
BELOV AA-1988-SOV-PHYS-JETP-V67-P2413
BELOV AA-1989-THEOR-MATH-PHYS+-V81-P1294
BENDER CM-1978-ADV-MATH-METHODS-SCI
BENDER CM-1994-J-MATH-PHYS-V35-P368
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1995-PHYS-REV-D-V51-P1875
BENDER CM-1994-PHYS-REV-D-V50-P6547
BENDER CM-1993-PHYS-REV-D-V48-P4919
BENDER CM-1992-PHYS-REV-D-V46-P5557
BENDER CM-1992-PHYS-REV-LETT-V68-P3674
BERA PK-1993-PHYS-REV-A-V48-P4764
BERLIN TH-1952-PHYS-REV-V86-P821
BERRY RS-1988-ADV-CHEM-PHYS-V70-P35
BERRY RS-1989-CONTEMP-PHYS-V30-P1
BLINDER SM-1984-J-MATH-PHYS-V25-P905
BOERNER H-1963-REPRESENTATIONS-GROU
BOETTCHER S-1995-PHYS-REV-E-V51-P3862
BOETTCHER S-1995-PHYS-REV-LETT-V74-P2410
BOLLE D-1984-PHYS-REV-A-V30-P1279
BOTTCHER C-1994-PHYS-REV-A-V49-P1714
BOYA LJ-1994-PHYS-REV-A-V50-P4397
BRAY AJ-1974-J-PHYS-A-MATH-GEN-V7-P2144
CASATI G-1993-P-INT-SCH-PHYS-ENR-F-P113
CHATTERJEE A-1986-J-MATH-PHYS-V27-P2331
CHATTERJEE A-1986-J-PHYS-A-MATH-GEN-V19-P3707
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P735
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P1193
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P2403
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHATTERJEE A-1987-PHYS-REV-A-V35-P2722
CHATTERJEE A-1986-PHYS-REV-A-V34-P2470
CHISHOLM CDH-1976-GROUP-THEORETICAL-TE-PCH8
CHRISTIANSEN H-1989-PHYS-REV-A-V40-P1760
COURANT R-1953-METHODS-MATH-PHYSICS-V1-P65
CVITANOVIC P-1984-GROUP-THEORY-1
DAHL JP-1993-DIMENSIONAL-SCALING-P165
DEVEGA HJ-1979-COMMUN-MATH-PHYS-V70-P29
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOMKE M-1995-PHYS-REV-A-V51-PR4309
DOMKE M-1992-PHYS-REV-LETT-V69-P1171
DOMKE M-1991-PHYS-REV-LETT-V66-P1306
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1986-J-CHEM-PHYS-V85-P4557
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P319
DUNN M-IN-PRESS-FEW-BODY-SY
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1990-J-PHYS-B-AT-MOL-OPT-V23-P2435
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
DUNN M-LARGE-DIMENSION-LIMI
DUNN M-UNPUB
DUTT R-1987-J-PHYS-B-AT-MOL-OPT-V20-P2437
DUTT R-1986-J-PHYS-B-AT-MOL-OPT-V19-P3411
DUTT R-1985-J-PHYS-B-AT-MOL-OPT-V18-P3311
DUTT R-1986-PHYS-REV-A-V34-P777
DUTT R-1986-Z-PHYS-D-ATOM-MOL-CL-V2-P207
ERKOC S-1986-PHYS-REV-D-V33-P588
EZRA GS-1991-J-PHYS-B-AT-MOL-OPT-V24-PL413
FANO U-1959-IRREDUCIBLE-TESORIAL
FEAGIN JM-1988-PHYS-REV-A-V37-P4599
FEAGIN JM-1986-PHYS-REV-LETT-V57-P984
FERRELL RA-1974-PHYS-REV-A-V9-P846
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
FRANTZ DD-1989-PHYS-REV-A-V40-P1175
GALLUP GA-1959-J-MOL-SPECTROSC-V3-P673
GANGOPADHYAY RS-1984-PHYS-REV-A-V30-P594
GANGYOPADHYAY RS-1985-PHYS-REV-D-V32-P3312
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GERRY CC-1983-PHYS-REV-D-V28-P1939
GOLDSCHMIDT YY-1993-NUCL-PHYS-B-V393-P507
GONZALEZ A-1992-FEW-BODY-SYST-V13-P105
GONZALEZ A-1991-FEW-BODY-SYST-V10-P43
GONZALEZ A-1990-FEW-BODY-SYST-V8-P73
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GONZALEZ A-1994-REV-MEX-FIS-V40-P12
GONZALEZ A-1993-REV-MEX-FIS-V39-P893
GONZALEZ A-1990-SOV-PHYS-LEBDEV-I-RE-V3-P36
GONZALEZ A-1988-SOV-PHYS-LEBEDEV-I-R-V7-P65
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOODSON DZ-1991-PHYS-REV-A-V44-P97
GOODSON DZ-1991-PHYS-REV-A-V43-P4617
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
GRUJIC PV-1995-J-PHYS-B-AT-MOL-OPT-V28-P1159
HAGG L-1993-DIMENSIONAL-SCALING-P315
HAMERMESH M-1989-GROUP-THEORY-ITS-APP-PCH10
HARRIS PG-1990-PHYS-REV-A-V42-P6443
HARRIS PG-1990-PHYS-REV-LETT-V65-P309
HERRICK DR-1983-ADV-CHEM-PHYS-V52-P1
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-J-MATH-PHYS-V16-P1047
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERRING C-1962-REV-MOD-PHYS-V34-P631
HERSCHBACH DR-1989-AT-PHYS-V11-P63
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1989-P-WELSCH-FD-CHEM-RES-V32-P95
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HERSHBACH DR-1987-FARADAY-DISC-CHEM-SO-V84-P465
HIKAMI S-1979-J-PHYS-A-MATH-GEN-V12-P759
HOLAS A-1990-CORRELATIONS-ELECTRO-P27
HOLAS A-1991-J-PHYS-A-MATH-GEN-V24-P4249
HOLAS A-1989-PHYS-REV-B-V40-P159
HOLSTEIN T-1952-J-CHEM-PHYS-V56-P832
IKHDAIR S-1992-DOGA-TR-J-PHYS-V16-P510
IKHDAIR SM-1993-Z-PHYS-D-ATOM-MOL-CL-V28-P1
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1984-PHYS-REV-D-V29-P1669
IMBO TD-1987-PHYS-REV-D-V36-P3438
IMBO TD-1985-PHYS-REV-LETT-V54-P2184
IWAMOTO N-1984-PHYS-REV-A-V30-P2597
IWAMOTO N-1984-PHYS-REV-A-V30-P3289
JAMEEL M-1986-J-PHYS-A-MATH-GEN-V19-P1967
JEVICKI A-1981-ANN-PHYS-NEW-YORK-V136-P113
JEVICKI A-1980-NUCL-PHYS-B-V171-P362
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1994-INT-J-QUANTUM-CHEM-V49-P657
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P417
KAIS S-1993-J-CHEM-PHYS-V99-P5184
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1989-J-CHEM-PHYS-V91-P7791
KAIS S-1997-J-PHYS-CHEM-US-V97-P2453
KAIS S-1994-J-PHYS-CHEM-US-V98-P11015
KAUSHAL RS-1984-LETT-NUOVO-CIMENTO-V41-P434
KELLMAN ME-1994-PHYS-REV-LETT-V73-P2543
KELLMAN ME-1985-PHYS-REV-LETT-V55-P1738
KING RC-1972-CAN-J-MATH-V33-P176
KOSTELECKY VA-1985-PHYS-REV-D-V32-P2627
KUDINOV AV-1982-CZECH-J-PHYS-B-V32-P556
KUDINOV AV-1983-THEOR-MATH-PHYS+-V56-P871
KVENTSEL GF-1981-PHYS-REV-A-V24-P2299
LAI CH-1987-J-MATH-PHYS-V28-P1801
LANDAU LD-1965-QUANTUM-MECHANICS-P312
LANGMUIR I-1919-J-AM-CHEMICAL-SOC-V41-P868
LAWDEN DF-1962-INTRO-TENSOR-CALCULU
LEGUILLOU JC-1990-LARGE-ORDER-BEHAV-PE
LEWIS GN-1916-J-AM-CHEM-SOC-V38-P762
LIN CD-1986-ADV-ATOM-MOL-PHYS-V22-P77
LIN CD-1995-PHYS-REP-V257-P1
LIN CD-1984-PHYS-REV-A-V29-P1019
LIN CD-1993-REV-FUNDAMENTAL-PROC-P357
LITTLEWOOD DE-1950-THEORY-GROUP-CHARACT-P236
LOESER JG-1993-DIMENSIONAL-SCALING-P389
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3882
LOESER JG-1986-J-CHEM-PHYS-V84-P3893
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
LOUCK JD-1960-J-MOL-SPECTROSCOPY-V4-P285
LOUCK JD-1960-J-MOL-SPECTROSCOPY-V4-P334
LOUCK JD-1960-J-MOL-SPECTRY-V4-P298
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MARCH NH-1985-J-MATH-PHYS-V26-P554
MARCH NH-1986-PHYS-REV-A-V34-P5106
MARCH NH-1984-PHYS-REV-A-V30-P2936
MATHEWS J-1970-MATH-METHODS-PHYSICS
MESSIAH A-1966-QUANTUM-MECH-V2
MIRAMONTES JL-1984-NUOVO-CIMENTO-B-V84-P10
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORALES DA-1989-CHEM-PHYS-LETT-V161-P253
MORENO G-1987-J-PHYS-B-ATOM-MOL-PH-V17-P21
MORGAN JD-1993-DIMENSIONAL-SCALING-P336
MULLER J-1994-PHYS-REV-A-V49-P2470
MULLER J-1992-PHYS-REV-A-V45-P1471
MUR VD-1987-JETP-LETT+-V45-P410
MUR VD-1990-SOV-J-NUCL-PHYS+-V51-P249
MUR VD-1988-SOV-J-NUCL-PHYS+-V47-P444
MUR VD-1990-SOV-PHYS-JETP-V70-P16
MUR VD-1990-SOV-PHYS-JETP-V70-P975
MURTAZA G-1973-J-MATH-PHYS-V14-P1196
MUSTAFA O-1993-J-PHYS-CONDENS-MATT-V5-P1333
MUSTAFA O-1993-J-QUANT-SPECTROSC-RA-V49-P65
MUSTAFA O-1994-PHYS-REV-A-V50-P2926
MUSTAFA O-1991-PHYS-REV-A-V44-P4142
MUSTAFA O-1991-PHYS-REV-A-V43-P5787
NIETO MM-1979-AM-J-PHYS-V47-P1067
NORMAND JM-1982-J-PHYS-A-MATH-GEN-V15-P1437
NORMAND JM-1980-LIE-GROUP-ROTATIONS
PADE H-1892-ANN-ECOLE-NORMALE-V9-P1
PAGNAMENTA A-1986-PHYS-REV-D-V34-P3528
PANJA MM-1993-PHYS-REV-A-V42-P106
PANJA MM-1988-PHYS-REV-A-V38-P3937
PAPANICOLAOU N-1985-J-PHYS-G-NUCL-PARTIC-V11-P149
PAPP E-1988-PHYS-REV-A-V38-P2158
PAPP E-1987-PHYS-REV-A-V36-P3550
POPOV VS-1994-JETP-LETT+-V59-P158
POPOV VS-1985-JETP-LETT+-V41-P539
POPOV VS-1994-PHYS-LETT-A-V193-P159
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1992-SOV-J-NUCL-PHYS-V54-P968
POPOV VS-1986-SOV-J-NUCL-PHYS+-V44-P714
RAPOSO EP-1991-AM-J-PHYS-V59-P633
RICHTER K-1992-J-PHYS-B-AT-MOL-OPT-V25-P3929
RICHTER K-1991-J-PHYS-B-AT-MOL-OPT-V24-PL565
RICHTER K-1990-PHYS-REV-LETT-V65-P1965
RICHTMYER RD-1978-PRINCIPLES-ADV-MATH-V1-PCH5
ROBINSON GD-1961-REPRESENTATION-THEOR-V2
ROMAN P-1975-SOME-MODERN-MATH-PHY-V1-P139
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P2455
ROST JM-1991-J-PHYS-B-AT-MOL-OPT-V24-P4293
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
ROST JM-1992-PHYS-REV-A-V46-P2410
ROY B-1987-J-PHYS-A-MATH-GEN-V20-P3051
ROY B-1986-PHYS-REV-A-V34-P5108
ROYCHOUDHURY R-1989-PHYS-REV-A-V39-P5523
ROYCHOUDHURY R-1988-PHYS-REV-A-V37-P2309
RUDNICK J-1987-J-PHYS-A-MATH-GEN-V20-P971
RUDNICK J-1986-J-PHYS-A-MATH-GEN-V19-PL191
RUDNICK J-1987-SCIENCE-V237-P384
SCHULTZ DR-1994-PHYS-REV-A-V50-P1348
SCHWARTZ C-1961-PHYSICAL-REVIEW-V123-P1700
SEVER R-1988-PHYS-REV-A-V37-P3158
SEVER R-1987-PHYS-REV-A-V36-P1045
SEVER R-1987-PHYS-REV-A-V35-P2725
SHAFER RE-1972-SIAM-J-NUMER-ANAL-V11-P447
SHARMA NL-1986-J-MATH-PHYS-V27-P1618
SINHAROY M-1984-J-PHYS-A-MATH-GEN-V17-PL687
STANLEY HE-1968-PHYS-REV-V176-P718
STEPANOV SS-1991-SOV-PHYS-JETP-V73-P227
STOLL RR-1952-LINEAR-ALGEBRA-MATRI-P151
SUKHATME U-1983-PHYS-REV-D-V28-P418
SUKHATME UP-1986-PHYS-REV-D-V33-P1166
SUNG SM-1993-J-PHYS-CHEM-US-V97-P2479
TALMAN JD-1968-SPECIAL-FUNCTIONS-GR
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TANG AZ-1987-PHYS-REV-A-V35-P911
TOWNES CH-1955-MICROWAVE-SPECTROSCO-P300
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1987-JETP-LETT+-V46-P178
VAINBERG VM-1987-JETP-LETT+-V46-P225
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
VALONE SM-1994-INT-J-QUANTUM-CHEM-V49-P591
VANDERMERWE PD-1985-J-CHEM-PHYS-V82-P5293
VANDERMERWE PD-1984-J-CHEM-PHYS-V81-P5976
VANDERMERWE PD-1989-PHYS-REV-A-V40-P1785
VANDERMERWE PD-1986-PHYS-REV-A-V34-P3452
VANDERMERWE PD-1986-PHYS-REV-D-V33-P3383
VANDERMERWE PD-1984-PHYS-REV-D-V30-P1596
VANDERMERWE PDT-1987-PHYS-REV-A-V36-P3446
VANDERMERWE PI-1983-LETT-NUOVO-CIMENTO-V37-P86
VARSHNI YP-1993-CAN-J-PHYS-V71-P122
VARSHNI YP-1994-CHEM-PHYS-V188-P197
VARSHNI YP-1989-PHYS-REV-A-V40-P2180
VARSHNI YP-1988-PHYS-REV-A-V38-P1595
VARSHNI YP-1987-PHYS-REV-A-V36-P3009
WATSON DK-1995-PHYS-REV-A-V51-PR5
WEISSBLUTH M-1978-ATOMS-MOL
WEN ZY-1985-J-MATH-PHYS-V26-P396
WEYL H-1939-CLASSICAL-GROUPS
WEYL H-1950-THEORY-GROUPS-QUANTU
WILSON KG-1983-REV-MOD-PHYS-V55-P583
WINTGEN D-1992-CHAOS-V2-P19
WINTGEN D-1994-PROG-THEOR-PHYS-SUPP-V116-P121
WITTEN E-1980-NATO-ADV-STUDY-I-S-B-V59
WITTEN E-1980-PHYS-TODAY-V33-P38
WOLBARST AB-1977-SYMMETRY-QUANTUM-SYS-P68
WYBOURNE BG-1974-CLASSICAL-GROUPS-PHY-PCH15
YAFFE LG-1983-PHYS-TODAY-V36-P50
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
YANEZ RJ-1994-PHYS-REV-A-V50-P3065
ZENG GJ-1994-PHYS-REV-A-V50-P4373
ZHEN Z-1993-DIMENSIONAL-SCALING-P83
Source item page count: 53
Publication Date: NOV 1
IDS No.: VR915
29-char source abbrev: ANN PHYS N Y



Record 34 of 100
Author(s): Dunn M; Watson DK
Title: Continuation of the wave function for higher angular momentum states to D dimensions .2. Elimination of linear dependencies
Source: ANNALS OF PHYSICS 1996, Vol 251, Iss 2, pp 319-336
No. cited references: 50
Addresses: Dunn M, UNIV OKLAHOMA, DEPT PHYS & ASTRON, NORMAN, OK 73019.
KeywordsPlus: MOLECULAR-ORBITAL DESCRIPTION; EXCITED 2-ELECTRON ATOMS; BARRIER STARK RESONANCES; PERTURBATION-THEORY; SCHRODINGER-EQUATION; VARIABLE DIMENSIONALITY; ELECTRONIC-STRUCTURE; QUANTUM-MECHANICS; HYDROGEN-ATOM; GROUND-STATE
Abstract: In a previous paper the authors have developed a finite expansion for the wave function which allows the methods of dimensional scaling to be applied to higher angular momentum states. The terms in the expansion, though, are not necessarily linearly independent and so the expansion requires a little refining. The sources of linear dependence in the expansion for the wave function are explored and protocols for dealing with them are presented. (C) 1996 Academic Press, Inc.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
BOERNER H-1963-REPRESENTATIONS-GROU
BOTTCHER C-1994-PHYS-REV-A-V49-P1714
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHISHOLM CDH-1976-GROUP-THEORETICAL-TE-PCH8
DUNN M-1996-ANN-PHYS-NEW-YORK-V251-P266
DUNN M-IN-PRESS-FEW-BODY-SY
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
DUNN M-UNPUB-LARGE-DIMENSIO
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GONZALEZ A-1992-FEW-BODY-SYST-V13-P105
GONZALEZ A-1991-FEW-BODY-SYST-V10-P43
GONZALEZ A-1990-FEW-BODY-SYST-V8-P73
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GONZALEZ A-1988-SOV-PHYS-LEBEDEV-I-R-V7-P65
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1991-PHYS-REV-A-V44-P97
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HAMERMESH M-1989-GROUP-THEORY-ITS-APP-V4-PCH10
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HERSCHBACK DR-1993-DIMENSIONAL-SCALING
KAIS S-1994-INT-J-QUANTUM-CHEM-V49-P657
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P5184
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
POPOV VS-1994-JETP-LETT+-V59-P158
POPOV VS-1994-PHYS-LETT-A-V193-P159
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1990-PHYS-LETT-A-V149-P425
ROST JM-1992-PHYS-REV-A-V46-P2410
RUTHERFORD DE-1948-SUBSTITUTIONAL-ANAL-P21
SCHULTZ DR-1994-PHYS-REV-A-V50-P1348
SCHWARTZ C-1961-PHYSICAL-REVIEW-V123-P1700
STEPANOV SS-1991-SOV-PHYS-JETP-V73-P227
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
WEYL H-1939-CLASSICAL-GROUPS
Source item page count: 18
Publication Date: NOV 1
IDS No.: VR915
29-char source abbrev: ANN PHYS N Y



Record 35 of 100
Author(s): Fernandez FM
Title: Direct calculation of Stark resonances in hydrogen
Source: PHYSICAL REVIEW A 1996, Vol 54, Iss 2, pp 1206-1209
No. cited references: 28
Addresses: Fernandez FM, NATL UNIV LA PLATA, FAC CIENCIAS EXACTAS, CEQUINOR, CALLE 47 & 115, CASILLA CORREO 962, RA-1900 LA PLATA, ARGENTINA.
KeywordsPlus: PERTURBATION-THEORY; ENERGY EIGENVALUES; ANHARMONIC-OSCILLATORS; SCHRODINGER-EQUATION; ELECTRIC-FIELD; ATOM; APPROXIMANTS; IONIZATION; SERIES
Abstract: We propose an alternative way of calculating the resonances of the Stark effect in hydrogen. The method is based on a rational approximation of the logarithmic derivative of the eigenfunction, and leads to a quantisation condition for the complex energies of the metastable states. We present accurate results for the ground and some excited states for several field intensities.
Cited references: ADAMS G-1994-ALGEBRAIC-APPROACH-S-P158
ALEXANDER MH-1969-PHYS-REV-V178-P34
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
BRANDAS E-1977-PHYS-REV-A-V16-P2207
CERJAN C-1978-INT-J-QUANTUM-CHEM-V14-P393
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
FERNANDEZ FM-1989-CAN-J-PHYS-V67-P931
FERNANDEZ FM-IN-PRESS-J-PHYS-A
FERNANDEZ FM-1995-J-PHYS-A-MATH-GEN-V28-P4043
FERNANDEZ FM-1993-J-PHYS-A-MATH-GEN-V26-P7169
FERNANDEZ FM-1995-PHYS-LETT-A-V203-P275
FERNANDEZ FM-1992-PHYS-LETT-A-V166-P173
FERNANDEZ FM-1993-PHYS-REV-A-V48-P4170
FERNANDEZ FM-1989-PHYS-REV-A-V40-P6149
FERNANDEZ FM-1989-PHYS-REV-A-V39-P1605
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FROELICH P-1976-INT-J-QUANTUM-CHEM-S-V10-P353
FROELICH P-1975-PHYS-REV-A-V12-P1
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
HEHENBERM-1974-PHYS-REV-A-V10-P1494
HIRSCHFELDER JO-1971-J-CHEM-PHYS-V55-P1395
MAQUET A-1983-PHYS-REV-A-V27-P2946
MARTIN A-1959-NUOVO-CIMENTO-V14-P403
POPOV VS-1990-PHYS-LETT-A-V149-P418
REINHARDT WP-1976-INT-J-QUANTUM-CHEM-S-V10-P359
RICE MH-1962-J-OPT-SOC-AM-V52-P239
SILVERMAN JN-1988-CHEM-PHYS-LETT-V153-P61
Source item page count: 4
Publication Date: AUG
IDS No.: VD676
29-char source abbrev: PHYS REV A



Record 36 of 100
Author(s): Ratis YL; Gareev FA
Title: Asymptotic estimates of the decay widths of quasistationary states
Source: PHYSICS OF ATOMIC NUCLEI 1996, Vol 59, Iss 6, pp 960-967
No. cited references: 38
Addresses: Ratis YL, JOINT INST NUCL RES, DUBNA 141980, RUSSIA.
Abstract: A new integral formalism for calculating the decay widths of quasistationary states is constructed without recourse to the assumption that a barrier-penetrability factor is small. The method of steepest descent is used to obtain asymptotic expressions for the widths of short-lived quasistationary states. On the basis of these expressions, the widths of Pb nuclei and of baryon and dibaryon resonances are calculated within a unified approach. The theory is shown to be in fairly goad agreement with experimental data. A natural explanation is given for the smallness of the widths of low-lying resonances.
Cited references: AIZENBERG J-1972-MICROSCOPIC-THEORY-N
BAUTRIN VN-1991-1750-LNPI-RUSS-AC-SC
BAZ AI-1971-RASSEYANIE-REAKTSII
BROWNE E-1986-TABLE-RADIOACTIVE-IS
BUCK B-1990-PHYS-REV-LETT-V65-P2975
CONDON EU-1929-PHYSICAL-REVIEW-V33-P127
ERICSON T-1988-PIONS-NUCLEI
FLUGGE F-1957-STRUCTURE-ATOMIC-NUC
GAMOW G-1928-Z-PHYS-V51-P204
GAMOW G-1928-Z-PHYSIK-V52-P510
GAREEV FA-1992-E292474-JINR-P272
GAREEV FA-1993-E293426-JINR
GAREEV FA-1994-FIZ-ELEM-CHASTITS-AT-V25-P855
GAREEV FA-1994-P-14-INT-IUPAP-C-FEW-P365
GAREEV FA-1994-P-7-INT-C-NUCL-REACT-P621
GAREEV FA-1992-P-INT-C-NUCL-STRUCT-P272
GAREEV FA-1993-P-WORKSH-GROSS-PROP-V21-P197
GEIGER H-1911-PHILOS-MAG-V22-P613
KADMENSKY SG-1985-ALFA-RASPAD-RODSTVEN
KADMENSKY SG-1978-YAD-FIZ-V27-P630
KADMENSKY SG-1978-YAD-FIZ-V27-P906
LANE AM-1958-REV-MOD-PHYS-V30-P257
LOCHER MF-1986-ADV-NUCL-PHYS-V17-P42
MONTANET L-1994-PHYS-REV-D-1-V50
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1991-PHYS-LETT-A-V157-P185
POPOV VS-1991-ZH-EKSP-TEOR-FIZ+-V100-P20
RATIS YL-1992-E292158-JINR
RATIS YL-1992-E2923-JINR
RATIS YL-1993-P-3-INT-S-WEAK-EL-IN-P795
RATIS YL-1992-P-WORKSH-GROSS-PROP-V20
TATISCHEFF B-1991-P-10-INT-SEM-HIGH-EN-P177
TATISCHEFF B-1994-P-12-INT-SEM-HIGH-EN
TROYAN YA-1994-FIZ-ELEM-CHASTITS-AT-V22-P603
TROYAN YA-1991-P-10-INT-SEM-HIGH-EN-P149
TROYAN YA-1993-YAD-FIZ-V56-P191
VAINSHTEIN LA-1966-OTKRYTYE-REZONATORY
YOKOSAWA A-1985-J-PHYS-SOC-JPN-S-V55-P251
Source item page count: 8
Publication Date: JUN
IDS No.: UW595
29-char source abbrev: PHYS ATOM NUCL-ENGL TR



Record 37 of 100
Author(s): Germann TC
Title: Use of dimension-dependent potentials for quasibound states
Source: JOURNAL OF CHEMICAL PHYSICS 1996, Vol 104, Iss 13, pp 5100-5108
No. cited references: 70
Addresses: Germann TC, UNIV CALIF BERKELEY, DEPT CHEM, BERKELEY, CA 94720.
KeywordsPlus: COMPLEX ENERGY EIGENVALUES; PERTURBATION-THEORY; 2-ELECTRON ATOMS; VARIABLE DIMENSIONALITY; QUANTUM-MECHANICS; 1/N EXPANSION; STRONG-FIELD; 1/N-EXPANSION; INTERPOLATION; RESONANCES
Abstract: Dimensional perturbation theory is applied to the calculation of complex energies for quasibound (resonance) eigenstates, using a modified dimension-dependent potential so that the infinite-dimensional limit better reflects the physical (three-dimensional) nature of the resonant eigenstate. Using the previous approach of retaining the D=3 form of the potential for all spatial dimension D, highly accurate results are obtained via Pade-Borel summation of the expansion coefficients when they are complex, but a lesser degree of convergence is found when quadratic Pade summation is applied to real expansion coefficients. The present technique of using a dimension-dependent potential allows complex expansion coefficients to be obtained in all cases, and is demonstrated to provide a marked improvement in convergence. We illustrate this approach on the Lennard-Jones potential and the hydrogen atom in an electric field. (C) 1996 American Institute of Physics.
Cited references: 1978-INT-J-QUANTUM-CHEM-V14
ADER JP-1983-PHYS-LETT-A-V97-P178
ARTECA GA-1990-LECT-NOTES-CHEM-V53-P126
ATABEK O-1981-CHEM-PHYS-LETT-V78-P13
ATABEK O-1980-MOL-PHYS-V40-P1107
BENDER CM-1978-ADV-MATH-METHODS-SCI
BLEIL R-1995-INT-J-QUANTUM-CHEM-S-V29-P349
BLEIL R-1995-J-CHEM-PHYS-V103-P6529
CASHION JK-1963-J-CHEM-PHYS-V39-P1872
CERJAN C-1978-INT-J-QUANTUM-CHEM-V14-P393
COHEN JM-IN-PRESS-INT-J-QUANT
CONNOR JNL-1983-J-CHEM-PHYS-V78-P6161
COOLEY JW-1961-MATH-COMPUTATION-V15-P363
DOOLEN GD-1978-INT-J-QUANTUM-CHEM-V14-P523
DOOLEN GD-1975-J-PHYS-B-AT-MOL-OPT-V8-P525
DUNN M-1994-J-CHEM-PHYS-V101-P5987
FERNANDEZ FM-1995-J-MATH-PHYS-V36-P3922
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FRIEDRICH H-1991-THEORETICAL-ATOMIC-P
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-J-PHYS-B-AT-MOL-OPT-V28-PL531
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GERMANN TC-1995-THESIS-HARVARD-U
GOODSON DZ-1992-DIMENSIONAL-SCALING
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOODSON DZ-1986-THESIS-HARVARD-U
GRAFFI S-1971-NUOVO-CIMENTO-B-V4-P313
GRAFFI S-1970-PHYSICS-LETTERS-B-V32-P631
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HO YK-1983-PHYS-REP-V99-P1
JUNKER BR-1982-ADV-ATOM-MOL-PHYS-V18-P207
KAIS S-1994-INT-J-QUANTUM-CHEM-V49-P657
KAIS S-1995-J-CHEM-PHYS-V102-P7472
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P5184
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KILLINGBECK J-1987-J-PHYS-A-MATH-GEN-V20-P601
LANDAU LD-1977-QUANTUM-MECHANICS
LEROY RJ-1978-J-CHEM-PHYS-V69-P3622
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
LOPEZCABRERA M-1991-THESIS-U-MICHIGAN
MANDELSHTAM VA-1993-PHYS-REV-LETT-V70-P1932
MULLER J-1994-PHYS-REV-A-V49-P2470
PADE H-1892-ANN-ECOLE-NORMALE-V9-P1
POPOV VS-1992-DIMENSIONAL-SCALING
POPOV VS-1994-PHYS-LETT-A-V193-P165
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1994-SOV-PHYS-JETP-V71-P303
PRESS WH-1992-NUMERICAL-RECIPES
REINHARDT WP-1982-ANNU-REV-PHYS-CHEM-V33-P224
REINHARDT WP-1982-INT-J-QUANTUM-CHEM-V21-P133
REINHARDT WP-1988-MATH-METHODS-COMPUTA-P41
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
SHAFER RE-1972-SIAM-J-NUMER-ANAL-V11-P447
TAYLOR HS-1970-ADVAN-CHEM-PHYS-V18-P91
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
WATSON DK-1995-PHYS-REV-A-V51-PR5
ZHENG Z-1992-DIMENSIONAL-SCALING
Source item page count: 9
Publication Date: APR 1
IDS No.: UD669
29-char source abbrev: J CHEM PHYS



Record 38 of 100
Author(s): Herschbach DR
Title: Dimensional scaling and renormalization
Source: INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1996, Vol 57, Iss 3, pp 295-308
No. cited references: 51
Addresses: Herschbach DR, HARVARD UNIV, DEPT CHEM, 12 OXFORD ST, CAMBRIDGE, MA 02138.
KeywordsPlus: MOLECULAR-ORBITAL DESCRIPTION; PERTURBATION-THEORY; 2-ELECTRON ATOMS; 1/D EXPANSION; CORRELATION ENERGIES; BODY PROBLEM; STATES; LIMIT; SYMMETRY; DENSITY
Abstract: Chief features of dimensional scaling methods are exemplified by briefly reviewing prototypical applications and recent developments. The pseudoclassical large-D limit usually can be evaluated exactly regardless of the magnitude, nature, and number of strong, nonseparable dynamical interactions. Often, this limit can be accurately Linked to D = 3 by perturbation or interpolation methods. This is because the dimension dependence of many-body effects tends to be smooth and mild when calibrated by appropriate one- or few-body problems. A simple renormalization procedure applied to atoms with up N similar to 100 electrons yields a major part of the correlation energy. From Hartree-Fock input, a renormalized nuclear charge is determined which renders the dimensionally scaled energy at D --> infinity a good approximation to that for D = 3 with the actual Z. Prospects are discussed for other means to exploit dimensional scaling, including an analogous renormalization procedure for molecules. (C) 1996 John Wiley & Sons, Inc.
Cited references: AVERY J-1995-STRUCTURE-DYNAMICS-A-P133
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BELOV AA-1988-SOV-PHYS-JETP-V67-P2413
BELOV AA-1989-THEOR-MATH-PHYS+-V81-P1294
BELOV AA-1990-ZH-EKSP-TEOR-FIZ+-V98-P25
CHAKRAVORTY SJ-1993-PHYS-REV-A-V47-P3649
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DUNN M-1994-J-CHEM-PHYS-V101-P5987
DUNN M-1993-J-PHYS-CHEM-US-V97-P2457
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
GERMANN TC-1994-COMPUT-PHYS-V8-P712
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-1995-PHYS-REV-LETT-V74-P658
GOLDSCHMIDT YY-1993-NUCL-PHYS-B-V393-P507
GONZALEZ A-1993-J-PHYS-B-AT-MOL-OPT-V26-P1253
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
GOODSON DZ-1991-PHYS-REV-A-V43-P4617
HERSCHBACH D-1993-P-AM-PHILOS-SOC-V137-P532
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
HOLAS A-1991-J-PHYS-A-MATH-GEN-V24-P4249
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1994-INT-J-QUANTUM-CHEM-V49-P657
KAIS S-1994-J-CHEM-PHYS-V100-P4367
KAIS S-1993-J-CHEM-PHYS-V99-P417
KAIS S-1993-J-CHEM-PHYS-V99-P5194
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1989-J-CHEM-PHYS-V91-P7791
KAIS S-1994-J-PHYS-CHEM-US-V98-P11015
KAIS S-1993-J-PHYS-CHEM-US-V97-P2453
KARPLUS M-1990-J-PHYS-CHEM-US-V99-P5435
LEVY M-1994-INT-J-QUANTUM-CHEM-V49-P539
LOESER JG-1994-J-CHEM-PHYS-V100-P5036
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MILLER WH-1973-J-CHEM-PHYS-V58-P1664
POPOV VS-1993-PHYS-LETT-A-V172-P193
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
ROST JM-1992-PHYS-REV-A-V46-P2410
RUDNICK J-1987-SCIENCE-V237-P384
STRAND MP-1979-J-CHEM-PHYS-V70-P3812
SUNG SM-1993-J-PHYS-CHEM-US-V97-P2479
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VALONE SM-1994-INT-J-QUANTUM-CHEM-V49-P591
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 14
Publication Date: FEB 5
IDS No.: TM715
29-char source abbrev: INT J QUANTUM CHEM



Record 39 of 100
Author(s): PANCHANAN S; ROY B; ROYCHOUDHURY R
Title: GROUP THEORETIC APPROACH FOR A DIRAC PARTICLE IN COULOMB-LIKE POTENTIALS
Source: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 1995, Vol 28, Iss 22, pp 6467-6477
No. cited references: 43
Addresses: PANCHANAN S, INDIAN STAT INST, PHYS & APPL MATH UNIT, CALCUTTA 700035, W BENGAL, INDIA.
KeywordsPlus: LARGE-N EXPANSION; RELATIVISTIC PERTURBATION-THEORY; SCALAR POTENTIALS; SPIN-1/2 PARTICLE; 1/N EXPANSION; EQUATION; EIGENVALUES; VECTOR
Abstract: The energy levels of the Dirac equation with a Kohn-Sham (KS) potential are obtained using algebraic perturbation theory based on the dynamical group structure SO(2, 1) without making any non-relativistic approximation. It has been shown that this formalism reproduces the exact analytical result for the eigenvalues of the Dirac equation with both vector and scalar Coulomb potentials. The lowest-order results obtained from the analytical formulae are found to be in excellent agreement with exact numerical results.
Cited references: AHARONOV Y-1980-PHYS-REV-LETT-V44-PE619
AHARONOV Y-1979-PHYS-REV-LETT-V43-PE176
AHARONOV Y-1979-PHYS-REV-LETT-V42-P1582
ATAG S-1989-J-MATH-PHYS-V30-P696
AU CK-1980-PHYS-REV-A-V20-P1820
AU CK-1979-PHYS-REV-A-V20-P2245
BAGROV VG-1977-EXACT-SOLUTIONS-RELA
BARUT AO-1971-DYNAMICAL-GROUPS-GEN
BARUT AO-1971-J-MATH-PHYS-V12-P841
BARUT AO-1977-J-PHYS-A-MATH-GEN-V10-P1243
BARUT AO-1973-SIAM-J-APPL-MATH-V25-P247
BECHLER A-1977-ANN-PHYS-NEW-YORK-V108-P49
BEDNAR M-1973-ANN-PHYS-NEW-YORK-V75-P305
BOHM A-DYNAMICAL-GROUPS-SPE-V2
BOHM A-DYNAMICAL-GROUPS-SPE-V1
CHATTERJEE A-1986-J-MATH-PHYS-V27-P2331
FLUGGE S-1974-PRACTICAL-QUANTUM-ME-V1-P175
FOCK VA-1978-FUNDAMENTALS-QUANTUM
GERRY CC-1983-PHYS-LETT-A-V95-P481
GERRY CC-1981-PHYS-REV-D-V23-P503
HALL RL-1985-J-MATH-PHYS-V26-P1779
KLEINERT H-1968-LECTURES-THEORETIC-B-V10
LIBERMAN DA-1965-PHYS-REV-V137-PA27
MATHYS P-1988-PHYS-REV-A-V36-P168
MCEMNAN J-1977-PHYS-REV-A-V16-P1768
MIKHAILOV AI-1968-SOV-PHYS-JETP-V27-P95
MIRAMONTES JL-1984-NUOVO-CIMENTO-B-V84-P10
MITTER H-1984-J-PHYS-A-MATH-GEN-V17-P1215
MOSHINSKY M-1989-J-PHYS-A-MATH-GEN-V22-PL817
NIETO MM-1979-AM-J-PHYS-V47-P1067
PANJA MM-1992-PHYS-REV-A-V45-P1523
PANJA MM-1990-PHYS-REV-A-V42-P106
PANJA MM-1988-PHYS-REV-A-V38-P3937
PAPP E-1991-ANN-PHYS-LEIPZIG-V48-P319
ROGERS GW-1984-PHYS-REV-A-V30-P35
ROY B-1990-J-PHYS-A-MATH-GEN-V23-P3555
ROY B-1990-J-PHYS-A-MATH-GEN-V23-P5095
ROYCHOUDHURY R-1987-J-PHYS-A-V21-PL1083
ROYCHOUDHURY R-1989-PHYS-REV-A-V39-P5523
RUTKOWSKI A-1986-J-PHYS-B-AT-MOL-OPT-V19-P149
RUTKOWSKI A-1986-J-PHYS-B-AT-MOL-OPT-V19-P3431
SERGEEV AV-1984-SOV-J-NUCL-PHYS+-V39-P731
TUTIK RS-1992-J-PHYS-A-MATH-GEN-V25-PL413
Source item page count: 11
Publication Date: NOV 21
IDS No.: TJ578
29-char source abbrev: J PHYS-A-MATH GEN



Record 40 of 100
Author(s): SHUBOV MA
Title: STARK QUANTUM-DEFECT FOR HIGH RYDBERG STATES OF 3-DIMENSIONAL SCHRODINGER OPERATOR WITH SCREENED COULOMB POTENTIAL
Source: NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS 1995, Vol 110, Iss 9, pp 1057-1092
No. cited references: 34
Addresses: SHUBOV MA, TEXAS TECH UNIV, LUBBOCK, TX 79409.
KeywordsPlus: IONIZATION THRESHOLD; PERTURBATION-THEORY; SCATTERING; FIELD
Abstract: We consider a 1-particle 3-dimensional Schrodinger operator with Coulomb potential perturbed by a compactly supported function q(x)(x is an element of R(3)) and by an external electric field. In contrast with the usual treatment of Stark effect, we assume that the electric field is homogeneous only in a bounded region and is zero outside this region. Both the region and the perturbation q(x) are assumed to have a special parabolic symmetry. We give a rigorous derivation of an asymptotic formula for the discrete spectrum of the problem. This formula describes the splitting of the high Rydberg energy levels of an alkali-like atom in an electric field. We give an explicit formula for the <<Stark quantum defect>> in terms of q(x) and the strength epsilon of the electric field. We give, also, explicit expressions for zero-order, linear and quadratic terms in the asymptotic expansion of the quantum defect with respect to epsilon --> 0. The derivation of the above-mentioned results is nonperturbative. We suggest a method which allows to carry out a very detailed asymptotic analysis of the solutions of the corresponding Schrodinger equation. The main formulas of this work can be used for numerical computations of the quantum defect. This work can, also, be considered as a necessary technical step towards the precise asymptotic analysis of the Stark resonances in the problem without a cut-off of the electrical field potential.
Cited references: ABRAMOVITZ M-1972-HDB-MATH-FUNCTIONS
ALLILUEV SP-1993-SOV-PHYS-JETP-V77-P701
AVRON JE-1977-COMMUN-MATH-PHYS-V52-P239
BETHE HA-1957-QUANTUM-MECHANICS-ON
BHATTACHARYA M-1994-INDIAN-J-PHYS-B-V68-P17
BUHHOLTZ H-1969-CONFLUENT-HYPERGEOME
FILHO OLS-1990-PHYS-REV-A-V42-P4008
GRAFFI S-1981-COMMUN-MATH-PHYS-V79-P91
GRAFFI S-1978-COMMUN-MATH-PHYS-V62-P83
HAKEN H-1993-PHYSICS-ATOMS-QUANTA
HERBST IW-1978-PHYS-REV-LETT-V41-P67
HEZEL TP-1992-AM-J-PHYS-V60-P324
ITO K-1993-PHYS-REV-A-V47-P1187
KLEIN M-1990-COMMUN-MATH-PHYS-V131-P109
KOLOSOV VV-1989-J-PHYS-B-AT-MOL-OPT-V22-P833
KOLOSOV VV-1989-PHYS-LETT-A-V140-P36
KVITSINSKY AA-1990-J-MATH-PHYS-V31-P2731
LANDAU LD-1977-QUANTUM-MECHANICS
LISITSA VS-1987-SOV-PHYS-USP-V30-P927
MAGNUS W-1966-FORMULAS-THEOREMS-SP
NEWTON RG-1982-SCATTERING-THEORY-WA
POPOV VS-1990-PHYS-LETT-A-V149-P418
REED M-1978-METHODS-MODERN-MATH-V4
RIDDEL RC-1967-PAC-J-MATH-V23-P2
SHUBOV MA-1991-INTEGR-EQUAT-OPER-TH-V14-P586
SHUBOV MA-1994-J-DIFFER-EQUATIONS-V114-P168
SHUBOV MA-1994-J-MATH-ANAL-APPL-V181-P600
SHUBOV MA-1994-J-MATH-PHYS-V35-P656
SHUBOVA MA-1988-THEORETICAL-MATH-PHY-V76-P379
SLATER LJ-1960-CONFLUENT-HYPERGEOME
STEBBINGS RF-1983-RYDBERG-STATES-ATOMS
TITCHMARSH EC-1958-EIGENFUNCTION-EXPANS
TITCHMARSH EC-1955-J-ANAL-MATH-V4-P187
VESELIC K-1977-MATH-Z-V156-P93
Source item page count: 36
Publication Date: SEP
IDS No.: RX376
29-char source abbrev: NUOVO CIMENTO B-GEN PHYS R



Record 41 of 100
Author(s): MUR VD; POPOV VS
Title: PERTURBATION-THEORY FOR QUASI-STATIONARY STATES
Source: PHYSICS OF ATOMIC NUCLEI 1995, Vol 58, Iss 8, pp 1329-1341
No. cited references: 36
Addresses: INST THEORET & EXPTL PHYS, STATE RES CTR, MOSCOW 117259, RUSSIA.
KeywordsPlus: QUANTIZATION RULES; APPROXIMATION
Abstract: Perturbation theory (to the first order) for quasistationary states is developed in the semiclassical approximation. Formulas for the energy shift delta E, of a resonance, as well as for the variation of its width delta Gamma due to a perturbative potential delta U, are obtained. These formulas are valid both for subbarrier and above barrier resonances. The results are illustrated using a number of potentials for which semiclassical expressions can be compared with exact solutions of the Schrodinger equation. The proposed scheme is generalized to a multidimensional case with completely separating variables.
Cited references: ALVAREZ G-1988-PHYS-REV-A-V37-P4079
BAZ AI-1961-EIGENFUNCTION-EXPA-2
BAZ AI-1971-RASSEYANIE-REAKTSII-P320
BENDER CM-1977-PHYS-REV-D-V16-P1740
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DUNHAM JL-1932-PHYS-REV-V41-P713
GALITSKII VM-1992-ZADACHI-KVANTOVOI-ME
GRADSHTEYN IS-1962-TABLITSY-INTEGRALOV
KESARWANI RN-1981-J-MATH-PHYS-V22-P1983
KESARWANI RN-1980-J-MATH-PHYS-V21-P90
LANDAU LD-1974-KVANTOVAYA-MEKHANIKA
LURE AI-1961-ANALITICHESKAYA-MEKH
MIGDAL AB-1975-KACHESTVENNYE-METODY
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1988-JETP-LETT+-V48-P67
MUR VD-1993-PISMA-ESKP-TEOR-FIZ-V57-P406
MUR VD-1978-PISMA-ESKP-TEOR-FIZ-V28-P140
MUR VD-1993-YAD-FIZ-V56-P125
MUR VD-1990-YAD-FIZ-V52-P1540
MUR VD-1993-ZH-EKSP-TEOR-FIZ+-V104-P2293
MUR VD-1988-ZH-EKSP-TEOR-FIZ+-V94-P125
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V50-P1393
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1978-PHYS-LETT-B-V80-P68
POPOV VS-1994-PISMA-ESKP-TEOR-FIZ-V59-P64
POPOV VS-1971-PISMA-ESKP-TEOR-FIZ-V13-P261
POPOV VS-1970-PISMA-ESKP-TEOR-FIZ-V11-P254
POPOV VS-1970-YAD-FIZ-V12-P429
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1970-ZH-EKSP-TEOR-FIZ-V59-P965
POPOV VS-1991-ZH-EKSP-TEOR-FIZ+-V100-P20
POPOV VS-1979-ZH-EKSP-TEOR-FIZ+-V76-P432
POPOV VS-1971-ZH-EKSP-TEOR-FIZ+-V61-P1334
PRUDNIKOV AP-1986-INTEGRALY-RYADY
ZELDOVICH YB-1971-USP-FIZ-NAUK-V105-P403
ZELDOVICH YB-1960-ZH-EKSP-TEOR-FIZ-V39-P776
Source item page count: 13
Publication Date: AUG
IDS No.: RU385
29-char source abbrev: PHYS ATOM NUCL-ENGL TR



Record 42 of 100
Author(s): SERGEEV AV
Title: SUMMATION OF THE EIGENVALUE PERTURBATION-SERIES BY MULTIVALUED PADE APPROXIMANTS - APPLICATION TO RESONANCE PROBLEMS AND DOUBLE WELLS
Source: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 1995, Vol 28, Iss 14, pp 4157-4162
No. cited references: 18
Addresses: SERGEEV AV, SI VAVILOV STATE OPT INST, TUCHKOV PEREULOK 1, ST PETERSBURG 199034, RUSSIA.
KeywordsPlus: ANHARMONIC-OSCILLATOR; ORDER; REAL
Abstract: Quadratic Pade approximants are used to obtain energy levels both for the anharmonic oscillator x(2)/2-lambda x(4) and for the double well -x(2)/2 + lambda x(4). In the first case, the complex-valued energy of the resonances is reproduced by summation of the real terms of the perturbation series. The second case is treated formally as an anharmonic oscillator with a purely imaginary frequency. We use the expansion around the central maximum of the potential to obtain a complex perturbation series on the unphysical sheer, of the energy function. Then, we perform an analytical continuation of this solution to the neighbouring physical sheet taking into account the supplementary branch of quadratic approximants. In this way we can reconstruct the real energy by summation of the complex series. Such an unusual approach eliminates the double degeneracy of states that makes ordinary perturbation theory (around the minima of the double-well potential) incorrect.
Cited references: BAKER GA-1975-ESSENTIALS-PADE-APPR
BENDER CM-1973-PHYS-REV-D-V7-P1620
COMMON AK-1982-J-PHYS-A-MATH-GEN-V15-P3665
DAMBURG RJ-1971-J-CHEM-PHYS-V55-P612
DELLADORA J-1979-PADE-APPROXIMATION-I-P88
DRUMMOND JE-1982-J-PHYS-A-MATH-GEN-V15-P2321
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
KILLINGBECK J-1978-PHYS-LETT-A-V67-P13
LOEFFEL JJ-1969-PHYSICS-LETTERS-B-V30-P656
MAYER IL-1985-J-PHYS-C-SOLID-STATE-V18-P3297
REINHARDT WP-1982-INT-J-QUANTUM-CHEM-V21-P133
SERGEEV AV-1984-SOV-J-NUCL-PHYS+-V39-P731
SERGEEV AV-1986-ZHVM-MF-V26-P348
SEZNEC R-1979-J-MATH-PHYS-V20-P1398
SHAFER RE-1974-SIAM-J-NUMER-ANAL-V11-P447
SHANLEY PE-1989-PHYS-LETT-A-V141-P331
SHORT L-1979-J-PHYS-G-NUCL-PARTIC-V5-P167
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
Source item page count: 6
Publication Date: JUL 21
IDS No.: RM213
29-char source abbrev: J PHYS-A-MATH GEN



Record 43 of 100
Author(s): RAO J; LI BW
Title: RESONANCES OF THE HYDROGEN-ATOM IN STRONG PARALLEL MAGNETIC AND ELECTRIC-FIELDS
Source: PHYSICAL REVIEW A 1995, Vol 51, Iss 6, pp 4526-4530
No. cited references: 24
Addresses: RAO J, CHINESE ACAD SCI, WUHAN INST PHYS, MAGNET RESONANCE & ATOM & MOLEC PHYS LAB, WUHAN 430071, PEOPLES R CHINA.
CHINA CTR ADV SCI & TECHNOL, WORLD LAB, BEIJING 100080, PEOPLES R CHINA.
CHINESE ACAD SCI, WUHAN INST PHYS, WUHAN 430071, PEOPLES R CHINA.
KeywordsPlus: STATES; APPROXIMANTS; DC
Cited references: BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
BHATTACHARYA SK-1983-J-PHYS-B-AT-MOL-OPT-V16-PL471
CACCIANI P-1988-J-PHYS-B-AT-MOL-OPT-V21-P3499
CHU SI-1978-CHEM-PHYS-LETT-V58-P462
DAMBURG RJ-1983-RYDBERG-STATES-ATOMS-P31
DEBOOR C-1978-PRACTICAL-GUIDE-SPLI
DELANDE D-1991-PHYS-REV-LETT-V25-P3237
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FRIEDRICH H-1983-PHYS-REV-A-V28-P1423
GLUSHKOV AV-1993-J-PHYS-B-AT-MOL-OPT-V26-PL379
JOHNSON BR-1983-PHYS-REV-LETT-V58-P2280
KLEPPNER D-1983-RYDBERG-STATES-ATOMS-P73
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
LIU WY-1993-PHYS-REV-A-V47-P3151
MAQUET A-1983-PHYS-REV-A-V27-P2946
POPOV VS-1990-PHYS-LETT-A-V149-P418
RAO JG-1994-PHYS-REV-A-V50-P1916
REINHARDT WP-1982-ANNU-REV-PHYS-CHEM-V33-P223
REINHARDT WP-1976-INT-J-QUANTUM-CHEM-S-V10-P359
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
VINCKE M-1987-J-PHYS-B-AT-MOL-OPT-V20-P3335
WATERLAND RL-1987-PHYS-REV-A-V35-P5064
XI JH-1992-PHYS-REV-A-V46-P5806
Source item page count: 5
Publication Date: JUN
IDS No.: RC541
29-char source abbrev: PHYS REV A



Record 44 of 100
Author(s): KARNAKOV BM; MUR VD; POPOV VS
Title: 1/N-DECOMPOSITION OF WAVE-FUNCTIONS
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1994, Vol 106, Iss 4, pp 976-992
No. cited references: 44
Addresses: KARNAKOV BM, MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
INT PHYS INST, MOSCOW 125040, RUSSIA.
MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
KeywordsPlus: SHIFTED 1/N EXPANSIONS; PERTURBATION-THEORY; QUANTUM-MECHANICS; SCHRODINGER-EQUATION; 1/N-EXPANSION; CHARMONIUM; SYSTEMS; FIELD; MODEL
Cited references: BACKENSTOSS G-1970-ANN-REV-NUCL-SCI-V20-P467
BENDER CM-1982-PHYS-REV-A-V25-P1305
BERK DD-1980-POTENTSIALNOE-RASSEY
CHATTERJEE A-1990-PHYS-REP-V186-P249
DESER S-1954-PHYSICAL-REVIEW-V96-P774
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOREN DJ-1986-PHYS-REV-A-V34-P2654
EICHTEN E-1980-PHYS-REV-D-V21-P203
EICHTEN E-1980-PHYS-REV-D-V21-P313
EICHTEN E-1978-PHYS-REV-D-V17-P3090
GALITSKII VM-1981-TEORIYA-STOLKNOVENIY
GERSTEIN SS-1977-PHYS-LETT-B-V72-P80
GODFREY S-1985-PHYS-REV-D-V32-P189
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HERCHBACH DR-1993-DIMENSIONAL-SCALING
HIKAMI S-1979-J-PHYS-A-MATH-GEN-V12-P759
IMBO T-1984-PHYS-REV-D-V29-P1669
JAFFE LG-1982-REV-MOD-PHYS-V54-P407
KARNAKOV BM-1988-ZH-EKSP-TEOR-FIZ+-V94-P65
KHEDING D-1965-VVEDENIE-METOD-FAZOV
KIRZHNITS DA-1982-ZH-EKSP-TEOR-FIZ+-V82-P657
KUDRYAVTSEV AE-1979-PISMA-ZHETF-V29-P311
LAMBERT E-1969-HELV-PHYS-ACTA-V42-P667
LANDAU LD-1989-KVANTOVAYA-MEKHANIKA
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MIGDAL AB-1975-KACHESTVENNYE-METODY
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MUR VD-1992-J-MOSC-PHYS-SOC-V2-P189
MUR VD-1987-JETP-LETT+-V45-P323
MUR VD-1976-TEOR-MAT-FIZ-V27-P204
MUR VD-1988-YAF-V47-P697
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
POPOV VS-1981-ZH-EKSP-TEOR-FIZ+-V80-P1271
POPOV VS-1979-ZH-EKSP-TEOR-FIZ+-V77-P1727
SUKHATME U-1983-PHYS-REV-D-V28-P418
VANDERMERWE PD-1986-PHYS-REV-D-V33-P3383
ZELDOVICH YB-1959-FTT-V1-P1637
ZELDOVICH YB-1960-USP-FIZ-NAUK-V71-P581
Source item page count: 17
Publication Date: OCT
IDS No.: PQ455
29-char source abbrev: ZH EKSP TEOR FIZ



Record 45 of 100
Author(s): POPOV VS; MUR VD; SERGEEV AV
Title: THEORY OF STARK-EFFECT IN THE STRONG-FIELD - CRITICAL FIELDS, ABOVE-BARRIER RESONANCES, DEPENDENCE ON DIMENSIONAL SCALING
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1994, Vol 106, Iss 4, pp 1001-1030
No. cited references: 58
Addresses: POPOV VS, INT PHYS INST, MOSCOW 125040, RUSSIA.
MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199034, RUSSIA.
KeywordsPlus: QUASI-STATIONARY STATES; UNIFORM ELECTRIC-FIELD; HYDROGEN-ATOM; PERTURBATION-THEORY; INTERFERENCE PHENOMENA; TUNNELING IONIZATION; RYDBERG ATOMS; LASER FIELD; HIGH ORDERS; 1/N-EXPANSION
Cited references: AHARONOV Y-1979-PHYS-REV-A-V20-P2245
AHARONOV Y-1979-PHYS-REV-LETT-V45-P1582
ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1993-ZH-EKSP-TEOR-FIZ+-V104-P3569
AUGST S-1989-PHYS-REV-LETT-V63-P2212
BATEMAN H-1953-HIGHER-TRANSCENDENTA-V1
BENDER CM-1982-PHYS-REV-A-V25-P1305
BETHE HA-1957-HDB-PHYSIK-V35-P88
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DOLGOV AD-1978-ZH-EKSP-TEOR-FIZ+-V75-P2010
DORR M-1990-PHYS-REV-LETT-V64-P2003
GIBSON G-1990-PHYS-REV-A-V41-P5079
GLAB WL-1985-PHYS-REV-A-V31-P530
GORELIK GE-1983-RAZVERNOST-PROSTRANS
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
KADOMTSEV MB-1981-ZH-EKSP-TEOR-FIZ+-V80-P1715
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KHEDING D-1965-VVEDENIE-METOD-FAZOV
KOLOSOV VV-1986-PISMA-ZHETF-V44-P457
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
KRAINOV VP-1993-6-P-INT-C-MULT-PROC
LANDAU LD-1974-KVANTOVAYA-MEKHANIKA
LANGER RE-1937-PHYS-REV-V51-P669
LUK TS-1981-PHYS-REV-LETT-V47-P83
MIGDAL AB-1975-KACHESTVENNYE-METODY
MILLER U-1981-SIMMETRIYA-RAZDELENI-P112
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1993-PISMA-ESKP-TEOR-FIZ-V57-P406
MUR VD-1993-ZH-EKSP-TEOR-FIZ-V4-P2293
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
MUR VD-1989-ZH-EKSP-TEOR-FIZ+-V96-P91
NG K-1987-PHYS-REV-A-V35-P2508
NUSSENZWEIG A-1990-PHYS-REV-A-V41-P4944
POPOV VS-1989-IC89320-PREPR
POPOV VS-1988-ITEP17388-PREPR
POPOV VS-1992-ITEP5892-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1994-PISMA-ESKP-TEOR-FIZ-V59-P150
POPOV VS-1991-ZH-EKSP-TEOR-FIZ-V100-P200
PRIZMAN V-1980-PHYS-REV-A-V22-P1833
SHAKESHAFT R-1990-PHYS-REV-A-V42-P1656
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
SLAVYANOV SY-1970-PROBLEMY-MAT-FIZ-P125
VAINBERG VM-1987-JETP-LETT+-V46-P178
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
VAINBERG VM-1990-ZH-EKSP-TEOR-FIZ+-V98-P847
YAMABE T-1977-PHYS-REV-A-V16-P877
YANG XL-1991-PHYS-REV-A-V43-P1186
Source item page count: 30
Publication Date: OCT
IDS No.: PQ455
29-char source abbrev: ZH EKSP TEOR FIZ



Record 46 of 100
Author(s): KOCHETOV EA; YUKALOV VI
Title: NEW THEORETICAL METHODS IN QUANTUM-ELECTRONICS
Source: IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA 1994, Vol 58, Iss 8, pp 4-19
No. cited references: 83
Addresses: KOCHETOV EA, MOSCOW JOINT NUCL RES INST, THEORET PHYS LAB, MOSCOW, RUSSIA.
KeywordsPlus: SELF-SIMILAR APPROXIMATIONS; PATH-INTEGRAL APPROACH; JAYNES-CUMMINGS MODEL; OPTIMIZED PERTURBATION-THEORY; COHERENT STATES; ANHARMONIC-OSCILLATOR; SCHRODINGER-EQUATION; VARIATIONAL APPROACH; FIELD AMPLITUDE; COULOMB SYSTEM
Cited references: ALLEN L-1978-OPTICHESKII-REZONANS
ANDREEV AEV-1988-KOOPERATIVNYE-YAVLEN
BALANTEKIN AB-1989-J-MATH-PHYS-V30-P274
BARS I-1983-COMMUN-MATH-PHYS-V91-P31
BARUT A-1980-TEORIYA-PREDSTAVLENI
BOGOLYUBOV NN-1974-ASIMPTOTICHESKIE-MET
BOSIGER P-1978-PHYS-REV-A-V18-P671
BUZANO C-1989-PHYS-REV-LETT-V62-P137
CHAKRABARTI R-1992-J-PHYS-A-MATH-GEN-V25-P6399
COOPER F-1992-PHYSICA-D-V56-P68
DECROMBRUGGHE M-1983-ANN-PHYS-NEW-YORK-V151-P99
DICKE RH-1954-PHYS-REV-V93-P99
DRAGANASCU GE-1992-PHYS-LETT-A-V170-P339
DRUMMOND PD-1980-J-PHYS-A-MATH-GEN-V13-P725
EFIMOV GV-1989-INT-J-MOD-PHYS-A-V4-P4977
ELLINAS D-1992-PHYS-REV-A-V45-P1822
EMELYANOV VI-1986-OPT-SPEKTROSK+-V60-P634
FATYGA BW-1991-PHYS-REV-D-V43-P1403
FERANCHUK ID-1984-J-PHYS-A-MATH-GEN-V17-P3111
FERANCHUK ID-1985-J-PHYS-C-SOLID-STATE-V18-P5083
FERNANDEZ FM-1991-PHYS-LETT-A-V160-P511
FRIEDBERR-1974-OPT-COMMUN-V10-P298
FRIEDBERR-1974-PHYS-REV-A-V10-P1728
GENDENSHTEIN LE-1985-USP-FIZ-NAUK+-V146-P553
GERRY CC-1989-PHYS-REV-A-V39-P971
GERRY CC-1988-PHYS-REV-A-V37-P1779
GLAUBER RJ-1963-PHYS-REV-V131-P2766
GLAUBER RJ-1963-PHYS-REV-V130-P2529
GOROKHOV AV-1988-MATEMATICHESKIE-PROB-P139
HAKEN H-1983-ADV-SYNERGETICS
HALL RL-1983-J-MATH-PHYS-V24-P324
HALL RL-1992-J-PHYS-A-MATH-GEN-V25-P4459
HALL RL-1985-PHYS-REV-A-V32-P14
HILLERY M-1987-OPT-COMMUN-V62-P135
HILLERY M-1984-PHYS-REV-A-V29-P1275
HILLERY M-1982-PHYS-REV-A-V26-P451
INOMATA A-1992-PATH-INTEGRALS-COHER
JAYNES ET-1963-P-IEEE-V51-P89
KIBLER M-1993-INT-J-QUANTUM-CHEM-V45-P209
KIBLER M-1987-PHYS-LETT-A-V121-P42
KISELEV JF-1988-MOD-PHYS-LETT-B-V1-P409
KISELEV YF-1988-ZH-EKSP-TEOR-FIZ+-V94-P344
KLEINERT H-1993-PHYS-LETT-B-V300-P261
KOCHAROVSKAYA OA-1988-JETP-LETT+-V48-P581
KOCHAROVSKAYA OA-1991-OPT-COMMUN-V84-P393
KOCHETOV EA-1992-J-PHYS-A-MATH-GEN-V25-P411
KOCHETOV EA-1993-JINR-E1793122-PREPR
KOSHETOV EA-1992-LASER-PHYS-V2-P770
LONDON R-1987-J-MOD-OPTICS-V34-P709
MELEZHIK VS-1993-JINR-E49394-PREPR
MUR VD-1992-J-MOSC-PHYS-SOC-V2-P189
OHNUKI Y-1978-PROG-THEOR-PHYS-V60-P548
PARADOPOULOS GJ-1986-J-MATH-PHYS-V27-P221
PERELOMOV AM-1987-OBOBSHCHENNYE-KOGERE
POPOV VS-1993-PHYS-LETT-A-V172-P193
RUDAVETS AG-1993-LASER-PHYS-V3-P522
SANDERS J-1985-AVERAGING-METHODS-NO
SCHRODINGER E-1926-NATURWISSENSCHAFTEN-V14-P664
SIMON B-1991-B-AM-MATH-SOC-V24-P303
STEVENSON PM-1981-PHYS-REV-D-V24-P1622
STEVENSON PM-1981-PHYS-REV-D-V23-P2916
SUKHATME U-1983-PHYS-REV-D-V28-P418
TANAS R-1984-COHERENCE-QUANTUM-OP-P643
VANKAMPEN NG-1985-PHYS-REP-V124-P69
WENIGER EJ-1993-J-MATH-PHYS-V34-P571
WENIGER EJ-1992-NUMERICAL-ALGORITHMS-V3-P477
WODKIEWICZ K-1985-J-OPT-SOC-AM-B-V2-P458
YUKALOV VI-1980-ANN-PHYS-LEIPZIG-V37-P171
YUKALOV VI-1979-ANN-PHYS-LEIPZIG-V36-P31
YUKALOV VI-1989-INT-J-MOD-PHYS-B-V3-P1691
YUKALOV VI-1992-J-MATH-PHYS-V33-P3994
YUKALOV VI-1991-J-MATH-PHYS-V32-P1235
YUKALOV VI-1990-J-MOD-OPTIC-V37-P1361
YUKALOV VI-1990-K-FIZICHESKIM-OSNOVA-P28
YUKALOV VI-1993-LASER-PHYS-V3-P870
YUKALOV VI-1992-LASER-PHYS-V2-P559
YUKALOV VI-1991-LASER-PHYS-V1-P85
YUKALOV VI-1990-PHYSICA-A-V167-P833
YUKALOV VI-1976-TEOR-MAT-FIZ-V28-P92
YUKALOV VI-1976-VESTN-MOSK-U-FIZ-AS+-V17-P270
YUKALOVA EP-1993-J-PHYS-A-MATH-GEN-V26-P2011
YUKALOVA EP-1993-PHYS-LETT-A-V175-P27
YUKALOVA EP-1993-PHYS-SCR-V7-P610
Source item page count: 16
Publication Date: AUG
IDS No.: PM837
29-char source abbrev: IZV AKAD NAUK FIZ



Record 47 of 100
Author(s): POPOV VS; MUR VD; SERGEEV AV
Title: CRITICAL ELECTRIC-FIELDS AND STARK RESONANCES IN THE HYDROGEN-ATOM
Source: PHYSICS LETTERS A 1994, Vol 193, Iss 2, pp 159-164
No. cited references: 21
Addresses: POPOV VS, INST THEORET & EXPTL PHYS, MOSCOW 117259, RUSSIA.
INT INST PHYS, MOSCOW 125040, RUSSIA.
MOSCOW PHYS ENGN INST, MOSCOW 115409, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199034, RUSSIA.
KeywordsPlus: TUNNELING IONIZATION; QUANTIZATION RULES; LASER FIELD; PHOTOIONIZATION; 1/N-EXPANSION; STATES
Abstract: The exact values of critical electric fields E(c) for different states of a hydrogen atom, including its ground state, as well as the widths Gamma(n) of the Stark resonances at E = E(c), are calculated (at E=E(c)(n(1), n(2), m) the potential barrier for an electron in the (n(1), n(2), m) state disappears). Using the modified quantization condition with barrier penetrability included, we explain the dependence of Gamma(n) on the principal quantum number n.
Cited references: AUGST S-1989-PHYS-REV-LETT-V63-P2212
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DORR M-1990-PHYS-REV-LETT-V64-P2003
GIBSON G-1990-PHYS-REV-A-V41-P5049
GLAB WL-1985-PHYS-REV-A-V31-P530
HEADING J-1962-INTRO-PHASE-INTEGRAL
LANDAU LD-1977-LIFSHITZ-QUANTUM-MEC
LANGER RE-1937-PHYS-REV-V51-P669
MUR VD-1990-JETP-LETT+-V51-P499
NG K-1987-PHYS-REV-A-V35-P2508
PONT M-1992-PHYS-REV-A-V45-P8235
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1994-PISMA-ESKP-TEOR-FIZ-V59-P150
POPOV VS-1991-ZH-EKSP-TEOR-FIZ+-V100-P20
SHAKESHAFT R-1990-PHYS-REV-A-V42-P1656
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1986-PISMA-ZH-EKSP-TEOR-F-V44-P9
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
YAMABE T-1977-PHYS-REV-A-V16-P877
Source item page count: 6
Publication Date: SEP 26
IDS No.: PH692
29-char source abbrev: PHYS LETT A



Record 48 of 100
Author(s): POPOV VS; SERGEEV AV
Title: LARGE ORDERS OF 1/N-EXPANSION FOR MULTIDIMENSIONAL PROBLEMS
Source: PHYSICS LETTERS A 1994, Vol 193, Iss 2, pp 165-172
No. cited references: 22
Addresses: POPOV VS, INST THEORET & EXPTL PHYS, MOSCOW 117259, RUSSIA.
INT INST PHYS, MOSCOW 125040, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199034, RUSSIA.
KeywordsPlus: PERTURBATION-THEORY; QUANTUM-MECHANICS; STRONG-FIELD
Abstract: The asymptotics of large orders of the 1/n-expansion is investigated for multidimensional problems of quantum mechanics and atomic physics, including those with separable variables (the hydrogen molecular ion H-2(+)), and those where separation of variables is impossible (a hydrogen atom in electric and magnetic fields). It is shown that the parameters of the asymptotics can be found by means of calculating sub-barrier trajectories with the help of the ''imaginary time'' method, as well as by solution of the eikonal equation.
Cited references: BENDER CM-1982-PHYS-REV-A-V25-P1305
CHATTERJEE A-1990-PHYS-REP-V186-P249
DYSON FJ-1952-PHYS-REV-V85-P631
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MUR VD-1989-ITEP11489-PREPR
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
PERELOMOV AM-1966-ZH-EKSP-TEO-V51-P309
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1972-ZH-EKSP-TEOR-FIZ-V63-P1586
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
POPOV VS-1971-ZH-EKSP-TEOR-FIZ+-V61-P1334
WEINBERG VM-1990-ZH-EKSP-TEOR-FIZ-V98-P847
Source item page count: 8
Publication Date: SEP 26
IDS No.: PH692
29-char source abbrev: PHYS LETT A



Record 49 of 100
Author(s): DUNN M; GERMANN TC; GOODSON DZ; TRAYNOR CA; MORGAN JD; WATSON DK; HERSCHBACH DR
Title: A LINEAR ALGEBRAIC-METHOD FOR EXACT COMPUTATION OF THE COEFFICIENTS OF THE 1/D EXPANSION OF THE SCHRODINGER-EQUATION
Source: JOURNAL OF CHEMICAL PHYSICS 1994, Vol 101, Iss 7, pp 5987-6004
No. cited references: 45
Addresses: DUNN M, UNIV OKLAHOMA, DEPT PHYS & ASTRON, NORMAN, OK 73019.
HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
SO METHODIST UNIV, DEPT CHEM, DALLAS, TX 75275.
UNIV DELAWARE, DEPT PHYS & ASTRON, NEWARK, DE 19716.
HARVARD SMITHSONIAN CTR ASTROPHYS, INST THEORET ATOM & MOLEC PHYS, CAMBRIDGE, MA 02138.
KeywordsPlus: DIMENSIONAL PERTURBATION-THEORY; 2-ELECTRON ATOMS; VARIABLE DIMENSIONALITY; QUANTUM-MECHANICS; EXCITED-STATES; STRONG-FIELD; LIMIT; INTERPOLATION; ENERGIES; SYSTEMS
Abstract: The 1/D expansion, where D is the dimensionality of space, offers a promising new approach for obtaining highly accurate solutions to the Schrodinger equation for atoms and molecules. The method typically employs an asymptotic expansion calculated to rather large order. Computation of the expansion coefficients has been feasible for very small systems, but extending the existing computational techniques to systems with more than three degrees of freedom has proved difficult. We present a new algorithm that greatly facilitates this computation. It yields exact values for expansion coefficients, with less roundoff error than the best alternative method. Our algorithm is formulated completely in terms of tenser arithmetic, which makes it easier to extend to systems with more than three degrees of freedom and to excited stares, simplifies the development of computer codes, simplifies memory management, and makes it well suited for implementation on parallel computer architectures. We formulate the algorithm for the calculation of energy eigenvalues, wave functions, and expectation values for an arbitrary many-body system and give estimates of storage and computational costs.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAKER JD-1990-PHYS-REV-A-V41-P1247
BENDER CM-1978-ADV-MATH-METHODS-SCI
BENDER CM-1982-PHYS-REV-A-V25-P1305
DUNN M-1993-DIMENSIONAL-SCALING-P375
DUNN M-UNPUB-J-PHYS-A
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GERMANN TC-IN-PRESS-COMPUT-PHYS
GERMANN TC-1993-J-CHEM-PHYS-V99-P7739
GERMANN TC-UNPUB-PHYS-REV-LETT
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1993-DIMENSIONAL-SCALING-P359
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1993-PHYS-REV-A-V48-P2668
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HILL RN-1985-J-CHEM-PHYS-V83-P1173
HYLLERAAS EA-1930-Z-PHYSIK-V65-P209
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KNIGHT RE-1963-REV-MOD-PHYS-V35-P436
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MATTHEWS J-1970-MATH-METHODS-PHYSICS-P366
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORGAN JD-1993-DIMENSIONAL-SCALING-P336
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1987-PHYS-LETT-A-V124-P77
ROST JM-1993-J-PHYS-CHEM-US-V97-P2461
ROTENBERG M-1970-ADVANCES-ATOMIC-MOLE-V6-P233
SLATER JC-1960-QUANTUM-THEORY-ELECT-V1
TAN AL-1993-DIMENSIONAL-SCALING-P20
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VAINBERG VM-1988-THEOR-MATH-PHYS+-V74-P269
VANVLECK JH-1973-WAVE-MECHANICS-1ST-5-P26
WILSON EB-1980-MOL-VIBRATIONS-P309
WITTEN E-1980-PHYS-TODAY-V33-P38
WITTEN E-1980-RECENT-DEV-GAUGE-THE-V59
Source item page count: 18
Publication Date: OCT 1
IDS No.: PH987
29-char source abbrev: J CHEM PHYS



Record 50 of 100
Author(s): POPOV VS; MUR VD; SERGEEV AV
Title: CRITICAL FIELDS AND ABOVE-BARRIER STARK RESONANCES
Source: JETP LETTERS 1994, Vol 59, Iss 3, pp 158-162
No. cited references: 16
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199034, RUSSIA.
KeywordsPlus: QUANTIZATION RULES; 1/N-EXPANSION
Abstract: Exact values of the critical field E(c) are calculated for a hydrogen atom, including the case of the ground state. The widths GAMMA(n) of Stark resonances at E = E(c) are also calculated. In the above-barrier region (E > E(c)) the widths GAMMA(n)(E) are essentially linear functions of the electric field strength.
Cited references: AUGUST S-1989-PHYS-REV-LETT-V63-P2212
GIPSON G-1990-PHYS-REV-A-V41-P5049
KRAINOV VP-1993-1993-P-INT-C-MULT-PR
LANDAU LD-1977-QUANTUM-MECHANICS
LANGER RE-1937-PHYS-REV-V51-P669
MUR VD-1993-JETP-LETT+-V57-P418
MUR VD-1990-JETP-LETT+-V51-P563
NG K-1987-PHYS-REV-A-V35-P2508
POPOV VS-1989-IC89320-PREPR
POPOV VS-1993-PHYS-LETT-A-V173-P63
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-SOV-PHYS-JETP-V73-P9
SHAKESHAFT R-1990-PHYS-REV-A-V42-P1656
Source item page count: 5
Publication Date: FEB 10
IDS No.: NC978
29-char source abbrev: JETP LETT-ENGL TR



Record 51 of 100
Author(s): POPOV VS; MUR VD
Title: PERTURBATION-THEORY FOR QUASI-STATIONARY LEVELS
Source: JETP LETTERS 1994, Vol 60, Iss 1, pp 66-70
No. cited references: 13
Addresses: POPOV VS, INST THEORET & EXPTL PHYS, 117259 MOSCOW, RUSSIA.
INT PHYS INST, 125040 MOSCOW, RUSSIA.
MOSCOW STATE ENGN PHYS INST, 115409 MOSCOW, RUSSIA.
KeywordsPlus: QUANTIZATION RULES; STATES
Abstract: A perturbation-theory formula is derived for the energies of quasistationary states (resonances) in the semiclassical approximation. This formula is valid for resonances either below or above the barrier. It is illustrated for several potentials, for which a comparison can be made with exact solutions.
Cited references: ALVAREZ G-1988-PHYS-REV-A-V37-P4079
BAZ AI-1946-EIGENFUNCTION-EXPANS
CONNOR JNL-1973-MOL-PHYS-V25-P1469
KAPUR PL-1938-P-ROY-SOC-A-V166-P277
MUR VD-1993-JETP-LETT+-V57-P418
MUR VD-1990-JETP-LETT+-V51-P563
MUR VD-1993-SOV-PHYS-JETP-V77-P18
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ+-V23-P924
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1991-SOV-PHYS-JETP-V73-P9
POPOV VS-1967-SOV-PHYS-JETP-V26-P222
ZELDOVICH YB-1960-SOV-PHYS-JETP-V12-P542
ZELDOVICH YB-1972-SOV-PHYS-USP-V14-P673
Source item page count: 5
Publication Date: JUL 10
IDS No.: PD159
29-char source abbrev: JETP LETT-ENGL TR



Record 52 of 100
Author(s): POPOV VS; SERGEEV AV; MUR VD; SHCHEBLYKIN AV
Title: ON THE ASYMPTOTICS OF HIGH-ORDER TERMS OF THE 1/N EXPANSION
Source: PHYSICS OF ATOMIC NUCLEI 1994, Vol 57, Iss 6, pp 1057-1065
No. cited references: 30
Addresses: POPOV VS, INST THEORET & EXPTL PHYS, MOSCOW, RUSSIA.
KeywordsPlus: PERTURBATION-THEORY; QUANTUM-MECHANICS; STRONG-FIELD; 1/N-EXPANSION; HYDROGEN
Abstract: Analytic and numerical methods for determining the asymptotics of high-order terms of the 1/n expansion in quantum-mechanical problems are developed. It is shown that this asymptotics is always of the factorial type. The dependence of parameters of the asymptotics on the form of the potential and on the coupling constant is especially analyzed in the vicinity of the point of collision of classical solutions.
Cited references: ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALVAREZ G-1988-PHYS-REV-A-V37-P4079
AVRON JE-1979-PHYS-REV-LETT-V43-P691
BENDER CM-1970-J-MATH-PHYS-V11-P797
BENDER CM-1973-PHYS-REV-D-V7-P1620
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
BREZIN E-1977-PHYS-REV-D-V15-P1558
CHATTERJEE A-1990-PHYS-REP-V186-P249
DYSON FJ-1952-PHYS-REV-V85-P631
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
JAFFE LG-1983-PHYS-TODAY-V36-P50
LANDAU LD-1989-KVANTOVAYA-MEKHANIKA
LIPATOV LN-1977-ZH-EKSP-TEOR-FIZ+-V72-P411
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P992
MUR VD-1987-JETP-LETT+-V45-P323
MUR VD-1991-YAD-FIZ-V54-P950
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
POPOV VS-1992-ITEP10692-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
SERGEEV AV-1992-ITEP108-PREPR
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
TIETZ T-1956-J-CHEM-PHYS-V25-P787
Source item page count: 9
Publication Date: JUN
IDS No.: NW247
29-char source abbrev: PHYS ATOM NUCL-ENGL TR



Record 53 of 100
Author(s): KARLSSON HO; GOSCINSKI O
Title: A DIRECT RECURSIVE RESIDUE GENERATION METHOD - APPLICATION TO PHOTOIONIZATION OF HYDROGEN IN STATIC ELECTRIC-FIELDS
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1994, Vol 27, Iss 6, pp 1061-1072
No. cited references: 41
Addresses: KARLSSON HO, UNIV UPPSALA, DEPT QUANTUM CHEM, BOX 518, S-75120 UPPSALA, SWEDEN.
KeywordsPlus: STARK-INDUCED RESONANCES; ATOMIC-HYDROGEN; CI CALCULATIONS; SPECTROSCOPY; LIMIT
Abstract: In studies of hydrogenic systems via the recursive residue generation method (RRGM) the major bottleneck is the matrix vector product HC, between the Hamiltonian matrix H and a Lanczos vector C. For highly excited states and/or strong perturbations the size of H grows fast leading to storage problems. By making-use of direct methods, i.e. avoidance of explicit construction on of large Hamiltonian matrices, such problems can be overcome. Utilizing the underlying analytical properties of the Laguerre basis e(-lambdar)L(k)2I+2(2lambdar) a direct RRGM (D-RRGM) for the unperturbed hydrogenic Hamiltonian is derived, changing the storage needs from scaling as N2 to 4N where N is the number of radial functions for each factorized H-0(l, m) block with the possibility of parallel processing. A further computational simplification is introduced by putting the expression for the photoionization (PI) cross section in the rational form conventionally used in the representation of density or states (DOS). This allows the construction of the PI cross section directly from the tridiagonal Lanczos matrix avoiding the explicit calculation of individual eigenvalues and eigenvectors. To illustrate and verify the method the PI cross section for a hydrogen atom in a static electric field, for both pi and cr polarization, was calculated for an electric field strength of F = 5714 V cm-1. Sufficiently large basis sets could be employed so that good comparison with experiment and other theoretical work was obtained, including the field-induced modulations near the zero-field ionization limit.
Cited references: ALIJAH A-1992-J-PHYS-B-AT-MOL-OPT-V25-P5043
ALVAREZ G-1991-PHYS-REV-A-V44-P3062
BENDAZZOLI-1993-INT-J-QUANTUM-CHEM-V27-P287
BENDAZZOLI GL-1991-CHEM-PHYS-LETT-V185-P125
BRANDAS E-1989-RESONANCES
CLARK CW-1982-J-PHYS-B-AT-MOL-OPT-V15-P1175
CULLUM JK-1985-LANCZOS-ALGORITHMS-L-V1
DELANDE D-1991-PHYS-REV-LETT-V66-P141
DELSART C-1987-J-PHYS-B-AT-MOL-OPT-V20-P4699
ERDELYI A-1953-HIGHER-TRANSCENDENTA-V2
FANO U-1968-REV-MOD-PHYS-V40-P441
FRIESNER RA-1987-INT-J-SUPERCOMPUT-AP-V1-P9
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
GOLDMAN SP-1989-PHYS-REV-A-V40-P1185
HARMIN DA-1990-ATOMS-STRONG-FIELDS-P61
HARRISON R-1993-THEOR-CHIM-ACTA-V4-P255
HAYDOCK R-1980-SOLID-STATE-PHYSICS-V35-P216
HEINE V-1980-SOLID-STATE-PHYSICS-V35-P1
HERBST IW-1979-COMMUN-MATH-PHYS-V64-P279
HERBST IW-1978-PHYS-REV-LETT-V41-P67
KARLSSON HO-1992-J-PHYS-B-AT-MOL-OPT-V25-P5015
KNOWLES PJ-1984-CHEM-PHYS-LETT-V111-P315
LANCZOS C-1950-J-RES-NAT-BUR-STAN-B-V45-P255
NESBET RK-1967-PHYS-REV-V155-P51
NICOLAIDES CA-1990-P-NATO-ADV-STUDY-I
OLSEN J-1990-CHEM-PHYS-LETT-V169-P463
PALDUS J-1976-THEORETICAL-CHEM-ADV-V2
POPOV VS-1990-PHYS-LETT-A-V149-P418
REINHARDT WP-1982-ANNU-REV-PHYS-CHEM-V33-P223
RESCIGNO TN-1975-PHYS-REV-A-V12-P522
ROOS B-1972-CHEM-PHYS-LETT-V15-P153
ROOS BO-1987-ADV-CHEM-PHYS-2-V69-P399
ROTENBERG M-1962-ANNALS-OF-PHYSICS-V19-P262
ROTTKE H-1986-PHYS-REV-A-V33-P301
SARGENT AL-1993-SIAM-NEWS-V26-P14
SCHNEIDER DJ-1989-ADV-CHEM-PHYS-V73-P387
SHAVITT I-1978-INT-J-QUANTUM-CHEM-S-V12-P5
SHAVITT I-1977-INT-J-QUANTUM-CHEM-S-V11-P131
SIEGBAHN PEM-1984-CHEM-PHYS-LETT-V109-P417
WYATT RE-1989-ADV-CHEM-PHYS-V73-P231
Source item page count: 12
Publication Date: MAR 28
IDS No.: ND749
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 54 of 100
Author(s): POPOV VS; SERGEEV AV
Title: ASYMPTOTICS OF THE HIGHEST ORDERS OF 1-N-DECOMPOSITION FOR MULTIDIMENSIONAL PROBLEMS
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1994, Vol 105, Iss 3, pp 568-591
No. cited references: 44
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199164, RUSSIA.
KeywordsPlus: EXPONENTIALLY SMALL TERMS; PERTURBATION-THEORY; QUANTUM-MECHANICS; HYDROGEN-ATOM; 1/R EXPANSION; STRONG-FIELD; 1/N-EXPANSION; H2+
Cited references: BENDER CM-1970-J-MATH-PHYSICS-V11-P796
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
CHATTERJEE A-1990-PHYS-REP-V186-P249
CIZEK J-1986-PHYS-REV-A-V33-P12
DAMBURG RJ-1984-PHYS-REV-LETT-V52-P1112
DYSON FJ-1952-PHYS-REV-V85-P631
HERSCHBACH DR-1993-DIMENSIONAL-SCALING
IMBO T-1984-PHYS-LETT-A-V105-P183
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KOMAROV IV-1976-SFEROIDALNYE-KULONOV
KOTOVA LP-1968-ZH-EKSP-TEOR-FIZ-V54-P1151
LANDAU LD-1989-KVANTOVAYA-MEKHANIKA
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MUR VD-1989-ITEF11489-PREPR
MUR VD-1987-JETP-LETT+-V45-P323
MUR VD-1991-PISMA-ESKP-TEOR-FIZ-V54-P950
MUR VD-1991-ZH-EKSP-TEOR-FIZ-V97-P1729
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
PAPP E-1988-PHYS-REP-V161-P171
PERELOMOV AM-1966-ZH-EKSP-TEO-V51-P309
POPOV VS-1993-DIMENSIONAL-SCALING-P217
POPOV VS-1992-ITEP10692-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1993-PHYS-LETT-A-V172-P193
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1993-PISMA-ESKP-TEOR-FIZ-V57-P273
POPOV VS-1971-PISMA-ESKP-TEOR-FIZ-V13-P261
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1994-YAF-V57
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1992-ZH-EKSP-TEOR-FIZ+-V102-P1453
POPOV VS-1971-ZH-EKSP-TEOR-FIZ+-V61-P1334
SCHMID A-1986-ANN-PHYS-NEW-YORK-V170-P333
VAINBERG VM-1990-ZH-EKSP-TEOR-FIZ+-V98-P847
YAFFE LG-1983-PHYS-TODAY-V36-P50
YAMABE T-1977-PHYS-REV-A-V16-P877
ZINNJUSTIN J-1981-J-MATH-PHYS-V22-P511
Source item page count: 24
Publication Date: MAR
IDS No.: NE470
29-char source abbrev: ZH EKSP TEOR FIZ



Record 55 of 100
Author(s): ALLILUEV SP; POPOV VS
Title: THEORY OF STARK-EFFECT - DIMENSIONAL SCALING EFFECT
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1993, Vol 104, Iss 5, pp 3569-3578
No. cited references: 45
Addresses: ALLILUEV SP, MOSCOW PHYS TECH INST, DOLGOPRUDNYI 111700, RUSSIA.
KeywordsPlus: PERTURBATION-THEORY; QUANTUM-MECHANICS; HYDROGEN-ATOM; STRONG-FIELD; 1/N-EXPANSION
Cited references: AHARONOV Y-1979-PHYS-REV-A-V20-P2245
AHARONOV Y-1979-PHYS-REV-LETT-V42-P1582
ALLILUEV SP-1982-DOKL-AKAD-NAUK-SSSR+-V265-P597
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1957-ZH-EKSP-TEOR-FIZ-V33-P200
ALLILUEV SP-1982-ZH-EKSP-TEOR-FIZ+-V82-P77
BANDER M-1966-REV-MOD-PHYS-V38-P330
BANDER M-1966-REV-MOD-PHYS-V38-P346
BARGMANN V-1935-Z-PHYS-V99-P576
BARUT AO-1967-PHYS-REV-V160-P1149
BARUT AO-1967-PHYS-REV-V157-P1180
BARUT AO-1967-PHYS-REV-V156-P1538
BARUT AO-1967-PHYS-REV-V156-P1541
BENDER CM-1982-PHYS-REV-A-V25-P1305
CHATTERJEE A-1990-PHYS-REP-V186-P249
CISNEROS A-1969-J-MATH-PHYS-V10-P277
DERDI G-1965-ZH-EKSP-TEOR-FIZ-V48-P1445
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-ZH-EKSP-TEOR-FIZ+-V75-P2010
EHRENFEST P-1917-P-AMSTERDAM-ACAD-V20-P200
FOCK V-1935-Z-PHYSIK-V98-P145
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FRONSDAL C-1967-PHYS-REV-V156-P1665
GORELIK GE-1983-RAZMERNOST-PROSTRANS-P197
HERSCHBACH DR-1983-DIMENSIONAL-SCALING
KOHN W-1955-PHYS-REV-V98-P915
LOUDON R-1959-AM-J-PHYS-V27-P649
MUR VD-1990-ZH-EKSP-TEOR-FIZ-V97-P92
PERELOMOV AM-1968-ZH-EKSP-TEOR-FIZ-V54-P1799
PERELOMOV AM-1966-ZH-EKSP-TEOR-FIZ-V50-P179
POPOV VS-1983-DIMENSIONAL-SCALING-P179
POPOV VS-1967-FIZIKA-VYSOKIKH-ENER-P702
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
PRIVMAN V-1980-PHYS-REV-A-V22-P1833
RIORDAN D-1963-VVEDENIE-KOMBINATORN
SCHWINGER J-1964-J-MATH-PHYS-V5-P1606
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
TURBINER AV-1984-USP-FIZ-NAUK+-V144-P35
VAINBERG VM-1990-ZH-EKSP-TEOR-FIZ+-V98-P847
VAINBERG VM-1981-ZH-EKSP-TEOR-FIZ+-V81-P1567
YAFFE LG-1983-PHYS-TODAY-V36-P50
YANG XL-1991-PHYS-REV-A-V43-P1186
ZASLOW B-1967-AM-J-PHYS-V35-P1118
Source item page count: 10
Publication Date: NOV
IDS No.: ML388
29-char source abbrev: ZH EKSP TEOR FIZ



Record 56 of 100
Author(s): GERMANN TC; KAIS S
Title: LARGE-ORDER DIMENSIONAL PERTURBATION-THEORY FOR COMPLEX ENERGY EIGENVALUES
Source: JOURNAL OF CHEMICAL PHYSICS 1993, Vol 99, Iss 10, pp 7739-7747
No. cited references: 36
Addresses: GERMANN TC, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
KeywordsPlus: SCHRODINGER-EQUATION; RESONANCE STATES; 2-ELECTRON ATOMS; STRONG-FIELD; 1/N-EXPANSION; LIMIT; INTERPOLATION; ROTATION
Abstract: Dimensional pertubation theory is applied to the calculation of complex energies for quasibound, or resonant, eigenstates of central potentials. Energy coefficients for an asymptotic expansion in powers of 1/kappa, where kappa = D + 2l and D is the Cartesian dimensionality of space, are computed using an iterative matrix based procedure. For effective potentials which contain a minimum along the real axis in the kappa --> infinity limit, Hermite-Pade summation is employed to obtain complex eigenenergies from real expansion coefficients. For repulsive potentials, we simply allow the radial coordinate to become complex and obtain complex expansion coefficients. Results for ground and excited states are presented for squelched harmonic oscillator (V0r2e(-r) and Lennard-Jones (12-6) potentials. Bound and quasibound rovibrational states for the hydrogen molecule are calculated from an analytic potential. We also describe the calculation of resonances for the hydrogen atom Stark effect by using the separated equations in parabolic coordinates. The methods used here should be readily extendable to systems with multiple degrees of freedom.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
BENDER CM-1978-ADV-MATH-METHODS-SCI
CERJAN C-1978-INT-J-QUANTUM-CHEM-V14-P393
CHU SI-1980-J-CHEM-PHYS-V72-P4772
CONNOR JNL-1983-J-CHEM-PHYS-V78-P6161
DUNN M-UNPUB
ENGDAHL E-1991-J-CHEM-PHYS-V94-P1636
FRIEDRICH H-1990-THEORETICAL-ATOMIC-P
GERMANN TC-UNPUB
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERSCHBACH DR-1992-DIMENSIONAL-SCALING
JUNKER BR-1982-ADV-ATOM-MOL-PHYS-V18-P207
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1993-J-CHEM-PHYS-V98-P3990
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KOLOS W-1965-J-CHEM-PHYS-V43-P2429
KORSCH HJ-1982-J-PHYS-B-AT-MOL-OPT-V15-P1
LANDAU LD-1977-QUANTUM-MECHANICS
LEVINE RD-1987-MOL-REACTION-DYNAMIC
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
LOPEZCABRERA M-1993-J-PHYS-CHEM-US-V97-P2467
MANIV T-1987-J-CHEM-PHYS-V86-P1048
MAQUET A-1983-PHYS-REV-A-V27-P2946
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
PADE H-1892-ANN-ECOLE-NORMALE-V9-P1
PADE MH-1972-SIAM-J-NUMER-ANAL-V11-P447
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
PRESS WH-1992-NUMERICAL-RECIPES
REINDHARDT WP-1982-MATH-FRONTIERS-COMPU-P41
WAECH TG-1967-J-CHEM-PHYSICS-V46-P4905
Source item page count: 9
Publication Date: NOV 15
IDS No.: MH744
29-char source abbrev: J CHEM PHYS



Record 57 of 100
Author(s): GOODSON DZ; WATSON DK
Title: DIMENSIONAL PERTURBATION-THEORY FOR EXCITED-STATES OF 2-ELECTRON ATOMS
Source: PHYSICAL REVIEW A 1993, Vol 48, Iss 4, pp 2668-2678
No. cited references: 35
Addresses: GOODSON DZ, BROWN UNIV, DEPT CHEM, PROVIDENCE, RI 02912.
UNIV OKLAHOMA, DEPT PHYS & ASTRON, NORMAN, OK 73019.
KeywordsPlus: SCHRODINGER-EQUATION; ELECTRONIC-STRUCTURE; LIMIT; 1/N-EXPANSION; FIELD
Abstract: Large-order dimensional perturbation theory, which yields high accuracy for ground-state energies, is applied here to excited states of the two-electron atom. Expansion coefficients are computed recursively using the moment method, which we formulate in terms of normal coordinates. We consider the first two excited S states of helium, corresponding, at the large-dimension limit, to one quantum in either the antisymmetric-stretch normal mode or the symmetric-stretch normal mode. Comparison with the hydrogenic limit has identified these states as Is 2s 3S and 1s2s 1S, respectively. We sum the 1/D expansions at D = 3, using summation procedures that take into account the dimensional singularity structure of the eigenvalues, and find convergence at D = 3 to the eigenvalues predicted by the hydrogenic assignments, despite apparent qualitative differences between the eigenfunctions at large D and those at D = 3. In the D --> infinity limit, the electrons are equidistant from the nucleus. Our results for 1s2s energies appear to imply that the shell structure is properly accounted for by terms in the expansion beyond the lowest order. This robustness of the 1/D expansion suggests that the method will be applicable to many-electron systems.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
AVERY J-1991-INT-J-QUANTUM-CHEM-V39-P657
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BENDER CM-1978-ADV-MATH-METHODS-SCI-P324
BENDER CM-1982-PHYS-REV-A-V25-P1305
DARBOUX MG-1878-J-MATH-V4-P377
DOMB C-1970-ADV-PHYS-V19-P339
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DUNN M-UNPUB
GOODSON DZ-1993-DIMENSIONAL-SCALING-P275
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1992-PHYS-REV-A-V46-P5428
HERRICK DR-1983-ADV-CHEM-PHYS-V52-P1
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
KELLMAN ME-1980-PHYS-REV-A-V22-P1536
LEWIS GN-1916-J-AM-CHEM-SOC-V38-P762
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3882
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MACEK J-1968-J-PHYSICS-B-V1-P831
NINHAM BW-1963-J-MATH-PHYS-V4-P679
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TRAYNOR CA-1993-J-PHYS-CHEM-US-V97-P2464
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
WHITTAKER ET-1940-COURSE-MODERN-ANAL-P140
WILSON EB-1955-MOL-VIBRATIONS-P69
ZHEN Z-UNPUB
Source item page count: 11
Publication Date: OCT
IDS No.: MC717
29-char source abbrev: PHYS REV A



Record 58 of 100
Author(s): KUANG Y; GU JS
Title: GENERALIZED WKB STUDIES OF SHAPE RESONANCE
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1993, Vol 26, Iss 18, pp 3057-3061
No. cited references: 16
Addresses: KUANG Y, CHENGDU UNIV SCI & TECHNOL, DEPT PHYS, SICHUAN 610065, PEOPLES R CHINA.
KeywordsPlus: STATES; IONIZATION; THRESHOLD; IONS; XE
Abstract: Based on the generalized WKB and complex energy method, we study the atomic shape resonance in the IPA model, where the photoionization cross section shows maximum structure at resonance energies near the top of the barrier, Only f states of atoms around Xe and Rn have observable shape resonance structures.
Cited references: ALFARO V-1965-POTENTIAL-SCATTERING
AMUSIA MY-1990-J-PHYS-B-AT-MOL-OPT-V23-P393
BECKER U-1986-PHYS-REV-A-V33-P841
CHENG KT-1983-PHYS-REV-A-V28-P2820
CONNOR JNL-1968-MOL-PHYS-V15-P37
HAENSEL R-1969-PHYS-REV-V188-P1375
HERMAN F-1963-ATOMIC-STRUCTURE-CAL
KOLOSOV VV-1989-J-PHYS-B-AT-MOL-OPT-V22-P833
MANSON ST-1968-PHYS-REV-V165-P165
MILLER SC-1953-PHYS-REV-V91-P174
POPOV VS-1991-PHYS-LETT-A-V157-P185
QI D-1989-NUCL-INSTRUM-MTHODS-V280-P189
SHEPARD HK-1983-PHYS-REV-D-V27-P1288
TONG XM-1990-PHYS-REV-A-V42-P5348
YE K-1992-5TH-P-C-AT-MOL-PHYS
YE K-1987-J-PHYSIQUE-V9-P527
Source item page count: 5
Publication Date: SEP 28
IDS No.: MA899
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 59 of 100
Author(s): GLUSHKOV AV; IVANOV LN
Title: DC STRONG-FIELD STARK-EFFECT - CONSISTENT QUANTUM-MECHANICAL APPROACH
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1993, Vol 26, Iss 14, pp L379-L385
No. cited references: 27
Addresses: GLUSHKOV AV, RUSSIAN ACAD SCI, INST SPECTR, TROITSK 142092, RUSSIA.
KeywordsPlus: ATOMIC NUCLEUS COLLISIONS; POSITRON PAIR PRODUCTION; UNIFORM ELECTRIC-FIELD; HYDROGEN-ATOM; 1/N-EXPANSION; APPROXIMANTS; RESONANCES
Abstract: The energies and the widths of the Stark resonances for the hydrogen atom are calculated using a new approach. It is based on the operator form of the perturbation theory of the Schrodinger equation. The method includes the physically reasonable distorted-waves approximation in the frame of the formally exact quantum-mechanical procedure. The zero-order Hamiltonian possessing only stationary states is determined only by its spectrum without specifying its explicit form. The method of calculation of the perturbation theory matrix elements is described.
Cited references: BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
DAMBURG RJ-1978-J-PHYS-B-AT-MOL-OPT-V11-P1921
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GLUSHKOV AV-1992-3RD-S-AT-SPECTR-MOSC
GLUSHKOV AV-1992-ISAN-N921AS-PREPR
HARMIN DA-1982-PHYS-REV-A-V26-P2656
HARMIN DA-1982-PHYS-REV-LETT-V49-P128
HEHENBERGER M-1975-PHYS-REV-A-V12-P1
IVANOV LN-1988-PHYS-REP-V164-P315
IVANOV LN-1991-PHYS-SCRIPTA-V43-P368
IVANOV LN-1991-PHYS-SCRIPTA-V43-P374
IVANOV LN-1975-QVANT-ELECTRON-V2-P585
IVANOVA EP-1985-PHYS-SCR-V32-P512
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
KONDRATOVICH VD-1982-ZH-EKSP-TEOR-FIZ-V4-P1256
LANDAU LD-1964-QUANTUM-MECHANICS
LISITSA VS-1987-USP-FYZ-NAUK-V153-P369
MAQUET A-1983-PHYS-REV-A-V27-P2946
NAYFEH MH-1984-ATOMIC-EXCITATION-RE
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1988-ZH-EKSP-TEOR-FIZ-V93-P450
SAKIMOTO K-1986-J-PHYS-B-AT-MOL-OPT-V19-P3011
STEBBINGS RF-1983-RYDBERG-STATES-ATOMS
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
Source item page count: 7
Publication Date: JUL 28
IDS No.: LR830
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 60 of 100
Author(s): MUR VD; POPOV VS
Title: WKB METHOD FOR RESONANCES
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1993, Vol 104, Iss 1, pp 2293-2313
No. cited references: 31
Addresses: MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, RUSSIA.
KeywordsPlus: ORDER; APPROXIMATION; STATES; ATOMS
Abstract: For the potentials with a barrier the analytical continuation of the Bohr - Sommerfeld quantization rule into the region of overbarrier resonances is derived. The equations obtained are valid for an arbitrary analytical potential satisfying the quasiclassical conditions and determine both the position of resonance E(r) and its width GAMMA. The results are demonstrated for a number of model potentials and also for the Stark effect in a strong field. The energy asymptotic of resonances in the strong coupling regime is found.
Cited references: ADHIKARI R-1988-PHYS-REV-A-V38-P1679
ALVAREZ G-1988-PHYS-REV-A-V37-P4079
BATEMAN H-1953-HIGHER-TRANSCENDENTA-V1-PCH2
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
BENDER CM-1977-PHYS-REV-D-V16-P1740
CASE KM-1950-PHYS-REV-V80-P797
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DUNHAM JL-1932-PHYS-REV-V41-P713
FREMAN N-1967-VKB-PRIBLIZHENIE
FROMAN N-1977-J-MATH-PHYS-V18-P96
KADOMTSEV MB-1981-ZH-EKSP-TEOR-FIZ-V380-P1715
KARNAKOV BM-1992-KVAZIKLASSICHESKOE-P
KESARWANI RN-1980-J-MATH-PHYS-V21-P2852
KHEDING D-1965-VVEDENIE-METOD-FAZOV
LANDAU LD-1974-KVANTOVAYA-MEKHANIKA
MARINOV MS-1975-J-PHYS-A-MATH-GEN-V8-P1575
MARINOV MS-1974-ZH-EKSP-TEOR-FIZ+-V67-P1250
MIGDAL AB-1975-KACHESTVENNYE-METODY
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1988-JETP-LETT+-V48-P67
MUR VD-1993-PISMA-ESKP-TEOR-FIZ-V57-P406
NG K-1987-PHYS-REV-A-V35-P2508
POKROVSKII VL-1961-ZH-EKSP-TEOR-FIZ-V40-P1713
POPOV VS-1987-ITEP177-PREPR
POPOV VS-1991-J-MOSCOW-PHYS-SOC-V1-P15
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P425
ROSENZWEIG C-1968-J-MATH-PHYS-V9-P849
SIMON B-1970-ANN-PHYS-V58-P76
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
YARIS R-1978-PHYS-REV-A-V18-P1816
Source item page count: 21
Publication Date: JUL
IDS No.: LT621
29-char source abbrev: ZH EKSP TEOR FIZ



Record 61 of 100
Author(s): MUR VD; POPOV VS
Title: QUANTIZATION RULES FOR ABOVE-BARRIER RESONANCES
Source: JETP LETTERS 1993, Vol 57, Iss 7, pp 418-422
No. cited references: 9
Addresses: MUR VD, MOSCOW ENGN PHYS INST, MOSCOW 115409, RUSSIA.
RUSSIAN ACAD SCI, INST THEORET & EXPTL PHYS, MOSCOW 117259, RUSSIA.
KeywordsPlus: APPROXIMATION; 1/N-EXPANSION
Abstract: The Bohr-Sommerfeld quantization condition is analytically continued into the above-barrier region. The result is used to find the asymptotic behavior of the energies of resonances under strong-coupling conditions.
Cited references: ALVAREZ G-1988-PHYS-REV-A-V37-P4079
BENDER CM-1977-PHYS-REV-D-V16-P1740
KESARWANI RN-1980-J-MATH-PHYS-V21-P90
LANDAU LD-1977-QUANTUM-MECHANICS
NG K-1987-PHYS-REV-A-V35-P2508
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
VAINBERG VM-1987-JETP-LETT+-V46-P225
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
Source item page count: 5
Publication Date: APR 10
IDS No.: LG880
29-char source abbrev: JETP LETT-ENGL TR



Record 62 of 100
Author(s): POPOV VS; SERGEEV AV
Title: ASYMPTOTIC FORM OF HIGHER ORDERS OF THE 1/N EXPANSION
Source: JETP LETTERS 1993, Vol 57, Iss 5, pp 281-285
No. cited references: 12
Addresses: POPOV VS, RUSSIAN ACAD SCI, INST THEORET & EXPTL PHYS, MOSCOW 117259, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG 199164, RUSSIA.
KeywordsPlus: PERTURBATION-THEORY; HYDROGEN-ATOM; STRONG-FIELD; 1/N-EXPANSION
Abstract: The asymptotic form of higher orders of the 1/n expansion in quantum mechanics is factorial. The Yukawa potential and the hydrogen atom in electric and magnetic fields are discussed.
Cited references: BENDER CM-1982-PHYS-REV-A-V25-P1305
CHATTERJEE A-1990-PHYS-REP-V186-P249
DYSON FJ-1952-PHYS-REV-V85-P631
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MUR VD-1990-SOV-PHYS-JETP-V70-P16
PERELOMOV AM-1966-SOV-PHYS-JETP-V24-P207
POPOV VS-1993-DIMENSIONAL-SCALING-P179
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1991-SOV-J-NUCL-PHYS+-V54-P968
VAINBERG VM-1990-ZH-EKSP-TEOR-FIZ+-V98-P847
Source item page count: 5
Publication Date: MAR 10
IDS No.: LA291
29-char source abbrev: JETP LETT-ENGL TR



Record 63 of 100
Author(s): KAIS S; HERSCHBACH DR
Title: DIMENSIONAL SCALING FOR QUASI-STATIONARY STATES
Source: JOURNAL OF CHEMICAL PHYSICS 1993, Vol 98, Iss 5, pp 3990-3998
No. cited references: 37
Addresses: KAIS S, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
KeywordsPlus: PERTURBATION-THEORY; CLASSICAL MECHANICS; RESONANCES; POTENTIALS; WIDTHS
Abstract: Complex energy eigenvalues which specify the location and width of quasibound or resonant states are computed to good approximation by a simple dimensional scaling method. As applied to bound states, the method involves minimizing an effective potential function in appropriately scaled coordinates to obtain exact energies in the D --> infinity limit, then computing approximate results for D = 3 by a perturbation expansion in I/D about this limit. For resonant states, the same procedure is used, with the radial coordinate now allowed to be complex. Five examples are treated: the repulsive exponential potential (e(-r)); a squelched harmonic oscillator (r2e(-r)); the inverted Kratzer potential (r-1 repulsion plus r-2 attraction); the Lennard-Jones potential (r-12 repulsion, r-6 attraction); and quasibound states for the rotational spectrum of the hydrogen molecule (X 1SIGMA(g)+, v = 0, J = 0 to 50). Comparisons with numerical integrations and other methods show that the much simpler dimensional scaling method, carried to second-order (terms in 1/D2), yields good results over an extremely wide range of the ratio of level widths to spacings. Other methods have not yet evaluated the very broad H-2 rotational resonances reported here (J> 39), which lie far above the centrifugal barrier.
Cited references: ALHASSID Y-1985-PHYS-REV-LETT-V54-P1746
ATABECK O-1982-J-PHYS-B-ATOM-MOL-PH-V19-P2689
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BARDSLEY JN-1978-INT-J-QUANTUM-CHEM-V14-P343
BENJAMIN I-1986-PHYS-REV-A-V33-P2833
CHAN YM-1965-MOLEC-PHYS-V9-P349
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHILD MS-1974-MOL-SPECTROSCOPY-V2-PCH7
CONNOR JNL-1983-J-CHEM-PHYS-V78-P6161
DOOLEN GD-1978-INT-J-QUANTUM-CHEM-V14-P523
FLUGGE S-1974-PRACTICAL-QUANTUM-ME-P178
GOODSON DZ-1992-J-CHEM-PHYS-V97-P8481
HERSCHBACH DR-1992-DIMENSIONAL-SCALING
IMBO T-1984-PHYS-REV-D-V29-P1669
KAIS S-1992-CHEM-PHYS-V161-P161
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KAIS S-1989-J-CHEM-PHYS-V91-P7791
KOLOS W-1965-J-CHEM-PHYS-V43-P2429
KORSCH HJ-1986-J-PHYS-B-AT-MOL-OPT-V19-P2139
LANDAU LD-1958-QUANTUM-MECHANICS-P440
LEROY RJ-1978-J-CHEM-PHYS-V69-P3622
LEROY RJ-1971-J-CHEM-PHYS-V54-P5114
LEROY RJ-1974-MOL-SPECTROSCOPY-V1-PCH3
LEVINE RD-1969-QUANTUM-MECHANICS-MO
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
MA ST-1946-PHYS-REV-V69-P668
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MUR VD-1990-SOV-PHYS-JETP-V70-P16
POPOV VS-1985-JETP-LETT+-V41-P539
POPOV VS-1991-PHYS-LETT-A-V157-P185
POPOV VS-1990-PHYS-LETT-A-V149-P418
REINHARDT WP-1982-ANNU-REV-PHYS-CHEM-V33-P223
ROST JM-IN-PRESS-J-PHYS-CHEM
STPANOV SS-1991-SOV-PHYS-JETP-V73-P227
TOENNIES JP-1974-J-CHEM-PHYS-V61-P2461
WAECH TG-1967-J-CHEM-PHYSICS-V46-P4905
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 9
Publication Date: MAR 1
IDS No.: KR111
29-char source abbrev: J CHEM PHYS



Record 64 of 100
Author(s): RADANTSEV VF
Title: STATIONARY CHARACTER OF 2D STATES IN INVERSION AND ACCUMULATION LAYERS ON ZERO-GAP HGCDTE
Source: SEMICONDUCTOR SCIENCE AND TECHNOLOGY 1993, Vol 8, Iss 3, pp 394-398
No. cited references: 21
Addresses: RADANTSEV VF, URAL STATE UNIV, INST PHYS & APPL MATH, LENIN ST 51, EKATHERINBURG 620083, RUSSIA.
KeywordsPlus: CHARGE LAYERS; SEMICONDUCTORS; SUBBANDS; SURFACE; HG1-XCDXTE
Abstract: 2DEG in inversion and accumulation layers on narrow-gap and gapless (epsilon(g) less-than-or-equal-to 0) Hg1-xCdxTe were investigated by using capacitance spectroscopy in magnetic fields. Although 2D states in investigated systems with epsilon(g) less-than-or-equal-to 0 are supposed to be resonant states, capacitance magneto-oscillations are distinctly resolved. Broadening of Landau levels does not differ significantly from that in HgCdTe with epsilon(g) > 0. The experimental subband parameters are in a very good agreement with theoretical calculations, which ignore the interband tunnelling. The stationary character of 2D states in Kane semiconductors may be understood in the framework of the conception developed for the description of the vacuum condensate of electrons near nuclei with supercritical charge. Even for epsilon(g) = 0 the effective quasi-relativistic potential provides a non-penetrating or a slightly penetrating barrier for 2D states. As a result more than 97 % of subband states are true stationary states or are well defined. If we take into account the spin polarization terms in the effective potential, all the states turn out to be true stationary states.
Cited references: ANDO T-1985-J-PHYS-SOC-JPN-V54-P2676
BRENIG W-1984-Z-PHYS-B-CON-MAT-V54-P191
DERYABINA TI-1983-FIZ-TEKH-POLUPROV-V17-P2065
MIGDAL AB-1978-FERMIONS-BOSONS-STRO
MIGDAL AB-1977-ZH-EKSP-TEOR-FIZ+-V72-P834
NACHEV I-1990-NUOVO-CIMENTO-D-V12-P1143
POPOV VS-1991-ZH-EKSP-TEOR-FIZ+-V100-P20
RADANTSEV VF-1988-SOV-PHYS-SEMICOND+-V22-P1136
RADANTSEV VF-1989-ZH-EKSP-TEOR-FIZ+-V96-P1793
RADANTSEV VF-1985-ZH-EKSP-TEOR-FIZ+-V61-P1234
SLINKMAN J-1989-PHYS-REV-B-V39-P1251
SOBKOWICZ P-1989-ACTA-PHYS-POL-A-V75-P29
SOBKOWICZ P-1990-SEMICOND-SCI-TECH-V5-P183
STEPNIEWSKI R-1984-J-PHYS-C-SOLID-STATE-V17-PL853
TAKADA Y-1982-LECTURE-NOTES-PHYSIC-V152-P101
WOLLRAB R-1989-SEMICOND-SCI-TECH-V4-P491
ZAVIALOV VV-1992-SOV-PHYS-SEMICOND-V26-P388
ZELDOVICH YB-1971-USP-FIZ-NAUK-V105-P403
ZIEGLER A-1989-EUROPHYS-LETT-V8-P543
ZIEGLER A-1988-SOLID-STATE-COMMUN-V65-P805
ZOLLNER JP-1988-PHYS-STATUS-SOLIDI-B-V148-P611
Source item page count: 5
Publication Date: MAR
IDS No.: KR620
29-char source abbrev: SEMICOND SCI TECHNOL



Record 65 of 100
Author(s): LOPEZCABRERA M; TAN AL; LOESER JG
Title: SCALING AND INTERPOLATION FOR DIMENSIONALLY GENERALIZED ELECTRONIC-STRUCTURE
Source: JOURNAL OF PHYSICAL CHEMISTRY 1993, Vol 97, Iss 10, pp 2467-2478
No. cited references: 47
Addresses: OREGON STATE UNIV, DEPT CHEM, CORVALLIS, OR 97331.
UNIV MICHIGAN, DEPT PHYS, ANN ARBOR, MI 48109.
KeywordsPlus: INTRASHELL EXCITED-STATES; 2-ELECTRON ATOMS; PSEUDOMOLECULAR ATOMS; QUANTUM-MECHANICS; EXPANSION; ENERGIES; GEOMETRY; FIELD; LIMIT
Abstract: Simple electronic structure problems generalized with respect to the spatial dimensionality D have two singular limits, D --> 1 and D --> infinity. Suitable scalings render the limiting solutions finite and reveal their complementary characters: D --> 1 gives point (delta function) interactions between particles, while D --> infinity yields point probability distributions between those particles. A single scaling that treats both limits simultaneously allows one to construct approximate D = 3 solutions by interpolation between the much simpler limits. In this paper we show how to construct and utilize such a uniform scaling. We construct the scaling, solve the limits, and interpolate to D = 3 for six model problems: Yukawa potential, hydrogen atom in a spherical cavity, H-2+, Hartree-Fock H-2, and Hartree-Fock two-electron atoms in weak magnetic and electric fields. The interpolated D = 3 energies and properties are typically accurate to within a few percent, except for cases where the D --> infinity limit gives multiple or unstable solutions. Extensions and improvements are also discussed.
Cited references: ALBEVERIO S-1988-SOLVABLE-MODELS-QUAN
BANYARD KE-1969-J-CHEM-PHYS-V51-P2680
BENDER CM-1982-PHYS-REV-A-V25-P1305
BERNASCONI J-1981-PHYSICS-ONE-DIMENSIO
BETHE HA-1977-QUANTUM-MECHANICS-ON-P227
CHATTERJEE A-1990-PHYS-REP-V186-P249
COHEN HD-1965-J-CHEM-PHYSICS-V43-P3558
DAS G-1966-J-CHEM-PHYS-V44-P87
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
FRAGA S-1968-MANY-ELECTRON-SYSTEM-PCH8
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FROST AA-1956-J-CHEM-PHYS-V25-P1150
GOODRICH FC-1972-PRIMER-QUANTUM-CHEM-P161
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HARRIS FE-1992-ALGEBRAIC-DIAGRAMMAT-P46
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
HULTHEN L-1951-REV-MODERN-PHYSICS-V23-P1
KAIS S-1992-CHEM-PHYS-V161-P393
KAIS S-1991-J-CHEM-PHYS-V95-P9028
KENDALL MG-1961-COURSE-GEOMETRY-DIME-P16
KOLOS W-1960-REV-MOD-PHYS-V32-P219
LAI CH-1987-J-MATH-PHYS-V28-P1801
LANGHOFF PW-1966-J-CHEM-PHYS-V44-P505
LIEB EH-1966-MATH-PHYSICS-ONE-DIM
LIPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
LOESER JG-1993-DIMENSIONAL-SCALING-P389
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3893
LOPEZ M-1991-THESIS-U-MICHIGAN
MORENO G-1984-J-PHYS-B-AT-MOL-OPT-V17-P21
NOGAMI Y-1976-AM-J-PHYS-V44-P886
SCHAAD JL-1970-J-CHEM-PHYS-V53-P851
SPANIER J-1987-ATLAS-FUNCTIONS-P231
SZABO A-1989-MODERN-QUANTUM-CHEM-P192
TAN AL-1993-DIMENSIOAL-SCALING-C-P230
TAN AL-1992-THESIS-HARVARD-U
TENHOOR MJ-1968-INT-J-QUANTUM-CHEM-V2-P109
TOLDY LL-1976-AM-J-PHYS-V44-P1192
VAINBERG VM-1986-JETP-LETT+-V44-P9
VANVLECK JH-1932-THEORY-ELECTRIC-MAGN-P91
WIND H-1965-J-CHEM-PHYS-V42-P2371
ZHEN Z-1993-DIMENSIONAL-SCALING-P83
Source item page count: 12
Publication Date: MAR 11
IDS No.: KT155
29-char source abbrev: J PHYS CHEM



Record 66 of 100
Author(s): POPOV VS
Title: ON THE THEORY OF THE ABOVE-THE-BARRIER STARK RESONANCES
Source: PHYSICS LETTERS A 1993, Vol 173, Iss 1, pp 63-68
No. cited references: 23
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
KeywordsPlus: HYDROGEN-ATOM; PERTURBATION-THEORY; QUANTUM-MECHANICS; ELECTRIC-FIELD; 1/N-EXPANSION; PHOTOIONIZATION
Abstract: A semiclassical 1/n-expansion for the Stark effect in a strong electric field epsilon is considered, which gives simple analytic formulae determining the atomic widths GAMMA(n)(epsilon). It has been shown that there is a range in which the widths of the Stark resonances depend almost linearly on the applied electric field, which agrees with numerical calculations.
Cited references: ALVAREZ G-1991-PHYS-REV-A-V44-P3060
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BENASSI L-1979-PHYS-REV-LETT-V42-P1430
BENDER CM-1982-PHYS-REV-A-V25-P1305
CHATTERJEE A-1990-PHYS-REP-V186-P249
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GLAB WL-1985-PHYS-REV-A-V31-P3677
KOLOSOV VV-1986-PISMA-ZHETF-V44-P457
MUR VD-1988-JETP-LETT+-V48-P67
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
MUR VD-1988-ZH-EKSP-TEOR-FIZ+-V94-P125
NG K-1987-PHYS-REV-A-V35-P2508
POPOV VS-1992-ITEP5892-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1986-YAD-FIZ-V44-P1103
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1986-PISMA-ZH-EKSP-TEOR-F-V44-P9
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
YAMABE T-1977-PHYS-REV-A-V16-P877
Source item page count: 6
Publication Date: JAN 25
IDS No.: KJ198
29-char source abbrev: PHYS LETT A



Record 67 of 100
Author(s): ALIJAH A
Title: PHOTOIONIZATION OF ATOMIC-HYDROGEN IN ELECTRIC-FIELDS
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1992, Vol 25, Iss 23, pp 5043-5053
No. cited references: 31
Addresses: ALIJAH A, UNIV BIELEFELD, FAK CHEM, POSTFACH 100131, W-4800 BIELEFELD 1, GERMANY.
KeywordsPlus: STARK-INDUCED RESONANCES; INTERFERENCE PHENOMENA; SHAPE RESONANCES; HIGH-ORDER; SPECTRUM; STATES; PHOTOIONISATION; SPECTROSCOPY; IONIZATION; DENSITY
Abstract: Photoionization spectra of atomic hydrogen in a homogeneous electric field are calculated by exact integration of the Schrodinger equation for both negative and positive energies and compared with various experimental data. The numerical method allows the spectra to be decomposed into contributions from the parabolic substates labelled by the quantum number n1. On this basis the field-induced continuum oscillations are discussed.
Cited references: ALIJAH A-1986-J-PHYS-B-AT-MOL-OPT-V19-P2617
ALVAREZ G-1991-PHYS-REV-A-V44-P3060
ALVAREZ G-1989-PHYS-REV-LETT-V63-P1364
BERGEMAN T-1984-PHYS-REV-LETT-V53-P775
BETHE HA-1957-QUANTUM-MECHANICS-ON
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
DELSART C-1987-J-PHYS-B-AT-MOL-OPT-V20-P4699
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
GRODZANOV TP-1988-PHYS-LETT-A-V132-P262
HARMIN DA-1985-PHYS-REV-A-V31-P2984
HARMIN DA-1982-PHYS-REV-A-V26-P2656
HARMIN DA-1981-PHYS-REV-A-V24-P2491
JOHNSON BR-1977-J-CHEM-PHYS-V67-P4086
KOLOSOV VV-1988-J-PHYS-B-ATOM-MOL-PH-V22-P833
KOLOSOV VV-1989-PHYS-LETT-A-V140-P36
KONDRATOVICH VD-1990-J-PHYS-B-AT-MOL-OPT-V23-P21
KONDRATOVICH VD-1990-J-PHYS-B-AT-MOL-OPT-V23-P3785
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
LANDAU LD-1979-LEHRBUCH-THEORETISCH-V3
LISITSA VS-1987-SOV-PHYS-USP-V30-P927
LUCKOENIG E-1980-J-PHYS-B-AT-MOL-OPT-V13-P1743
LUCKOENIG E-1980-J-PHYS-B-AT-MOL-OPT-V13-P1769
MILNE WE-1930-PHYS-REV-V35-P863
NICOLAIDES CA-1990-1988-P-NATO-ADV-STUD
POPOV VS-1990-PHYS-LETT-A-V149-P425
ROTTKE H-1986-PHYS-REV-A-V33-P301
SILVERMAN JN-1988-CHEM-PHYS-LETT-V153-P61
SILVERSTONE HJ-1990-1988-P-NATO-ADV-STUD
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
Source item page count: 11
Publication Date: DEC 14
IDS No.: KE313
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 68 of 100
Author(s): POPOV VS; SERGEEV AV; SHCHEBLYKIN AV
Title: ON THE STRUCTURE OF LARGE ORDERS IN 1/N-EXPANSION
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1992, Vol 102, Iss 5, pp 1453-1468
No. cited references: 41
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, RUSSIA.
SI VAVILOV STATE OPT INST, ST PETERSBURG, RUSSIA.
KeywordsPlus: LARGE-N EXPANSIONS; BENDER-WU FORMULA; PERTURBATION-THEORY; QUANTUM-MECHANICS; HYDROGEN-ATOM; STRONG-FIELD
Abstract: The asymptotic behaviour of large orders in 1/n-expansion is found for the problems of quantum mechanics. The coefficients of 1/n-expansion epsilon(k) are shown to increase as a factorial k! a(k) at k-->infinity. The a-parameter vs coupling constant dependence is studied. The analytic formulas obtained agree with the numerical calculations. The structure of 1/n-expansion is considered in detail for the Yukawa, Hulten and funnel potentials, as well as for the Stark effect in hydrogen and for the molecular ion H.
Cited references: ALLILUEV SP-1982-DOKL-AKAD-NAUK-SSSR+-V265-P597
ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1982-ZH-EKSP-TEOR-FIZ+-V82-P77
ALVAREZ G-1988-PHYS-REV-A-V37-P4079
AVRON JE-1979-PHYS-REV-LETT-V43-P691
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BENASSI L-1979-PHYS-REV-LETT-V42-P1430
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1973-PHYS-REV-D-V7-P1620
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
BENDER CM-1968-PHYSICAL-REVIEW-LETT-V21-P406
CHATTERJEE A-1990-PHYS-REP-V186-P249
COMMON AK-1982-J-PHYS-A-MATH-GEN-V15-P3665
DEMKOV YN-1972-ZH-EKSP-TEOR-FIZ-V62-P125
DYSON FJ-1952-PHYS-REV-V85-P631
IMBO T-1985-PHYS-REV-D-V31-P2655
IMBO T-1984-PHYS-REV-D-V29-P1669
IMBO T-1983-PHYS-REV-D-V28-P418
KHARDI G-1951-RASKHODYASHCHIESYA
KOMAROV IV-1976-SFEROIDALNYE-KULONOV
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
POPOV VS-1989-ITEF11489-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1977-PHYS-LETT-B-V72-P99
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1978-ZH-EKSP-TEOR-FIZ-V47-P445
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
STEPANOV SS-1991-ZH-EKSP-TEOR-FIZ+-V100-P415
TIETZ T-1956-J-CHEM-PHYS-V25-P787
VAINBERG VM-1983-DOKL-AKAD-NAUK-SSSR+-V272-P335
VAINBERG VM-1989-ITEF16089-PREPR
VAINBERG VM-1988-TEOR-MAT-FIZ-V74-P399
VAINBERG VM-1990-ZH-EKSP-TEOR-FIZ+-V98-P847
YAFFE LG-1983-PHYS-TODAY-V36-P50
Source item page count: 16
Publication Date: NOV
IDS No.: KC951
29-char source abbrev: ZH EKSP TEOR FIZ



Record 69 of 100
Author(s): POPOV VS; SERGEEV AV
Title: LARGE ORDERS OF THE 1/N EXPANSION IN QUANTUM-MECHANICS
Source: PHYSICS LETTERS A 1993, Vol 172, Iss 4, pp 193-198
No. cited references: 26
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA.
KeywordsPlus: BENDER-WU FORMULA; PERTURBATION-THEORY; STRONG-FIELD; HYDROGEN; 1/N-EXPANSION
Abstract: The asymptotics of large orders of the 1/n expansion in quantum mechanics has been found. It is shown that the coefficients epsilon(k) grow as k!a(k) With k-->infinity, and the dependence of the parameter a on the coupling constant is investigated.
Cited references: ALLILUEV SP-1980-PHYS-LETT-A-V78-P43
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
ALLILUEV SP-1982-ZH-EKSP-TEOR-FIZ+-V82-P77
ALVAREZ G-1988-PHYS-REV-A-V37-P4079
AVRON JE-1979-PHYS-REV-LETT-V43-P691
BENASSI L-1979-PHYS-REV-LETT-V42-P704
BENASSI L-1979-PHYS-REV-LETT-V42-P1430
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1973-PHYS-REV-D-V7-P1620
BENDER CM-1971-PHYSICAL-REVIEW-LETT-V27-P461
CHATTERJEE A-1990-PHYS-REP-V186-P249
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
DYSON FJ-1952-PHYS-REV-V85-P631
IMBO T-1984-PHYS-REV-D-V29-P1669
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1989-PREPRINT-ITEP-P114
POPOV VS-1991-YAD-FIZ-V54-P1582
POPOV VS-1986-YAD-FIZ-V44-P1103
SILVERSTONE HJ-1979-PHYS-REV-LETT-V43-P1498
YAFFE LG-1983-PHYS-TODAY-V36-P50
Source item page count: 6
Publication Date: JAN 4
IDS No.: KG309
29-char source abbrev: PHYS LETT A



Record 70 of 100
Author(s): GOODSON DZ; LOPEZCABRERA M; HERSCHBACH DR; MORGAN JD
Title: LARGE-ORDER DIMENSIONAL PERTURBATION-THEORY FOR 2-ELECTRON ATOMS
Source: JOURNAL OF CHEMICAL PHYSICS 1992, Vol 97, Iss 11, pp 8481-8496
No. cited references: 65
Addresses: GOODSON DZ, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
UNIV DELAWARE, DEPT PHYS & ASTRON, NEWARK, DE 19716.
HARVARD SMITHSONIAN CTR ASTROPHYS, INST THEORET ATOM & MOLEC PHYS, CAMBRIDGE, MA 02138.
KeywordsPlus: LARGE N-EXPANSION; SCHRODINGER-EQUATION; QUANTUM-MECHANICS; STRONG-FIELD; VARIABLE DIMENSIONALITY; ELECTRONIC-STRUCTURE; LIMIT; 1/N-EXPANSION; DEGENERACIES; SEPARATION
Abstract: An asymptotic expansion for the electronic energy of two-electron atoms is developed in powers of delta=1/D, the reciprocal of the Cartesian dimensionality of space. The expansion coefficients are calculated to high order (approximately 20 to 30) by an efficient recursive procedure. Analysis of the coefficients elucidates the singularity structure in the D --> infinity limit, which exhibits aspects of both an essential singularity and a square-root branch point. Pade-Borel summation incorporating results of the singularity analysis yields highly accurate energies; the quality improves substantially with increase in either D or the nuclear charge Z. For He, we obtain 9 significant figures for the ground state and 11 for the 2p2 3P(e) doubly excited state, which is isomorphic with the ground state at D=5 by virtue of interdimensional degeneracy. The maximum accuracy obtainable appears to be limited only by accumulation of roundoff error in the expansion coefficients. The method invites application to systems with many electrons or subject to external fields.
Cited references: ABRAMOVITZ A-1965-HDB-MATH-FUNCTIONS-P260
ADER JP-1983-PHYS-LETT-A-V97-P178
ARFKIN G-1985-MATH-METHODS-PHYSICI-P281
AVERY J-1991-INT-J-QUANTUM-CHEM-V39-P657
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BAKER GA-1981-ENCY-MATH-ITS-APPLIC-V13-P48
BAKER JD-1990-PHYS-REV-A-V41-P1247
BENDER CM-1978-ADV-MATH-METHODS-SCI
BENDER CM-1982-PHYS-REV-A-V25-P1305
CHATTERJEE A-1990-PHYS-REP-V186-P249
CHURCHILL RV-1984-COMPLEX-VARIABLES-AP-P126
DARBOUX MG-1878-J-MATH-V4-P377
DOMB C-1970-ADV-PHYS-V19-P339
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1988-J-PHYS-CHEM-US-V92-P1816
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DUNHAM JL-1932-PHYS-REV-V41-P713
DUNHAM JL-1932-PHYS-REV-V41-P721
DUNN M-IN-PRESS
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GOODSON DZ-1992-IN-PRESS-PHYS-REV-A
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1991-PHYS-REV-A-V44-P97
GOODSON DZ-1991-PHYS-REV-A-V43-P4617
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOODSON DZ-UNPUB-PHYS-REV-A
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
GRAFFI S-1970-PHYS-LETT-B-V32-P240
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1992-DIMENSIONAL-SCALING
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
LANGMUIR I-1919-J-AM-CHEMICAL-SOC-V41-P868
LEWIS GN-1916-J-AM-CHEM-SOC-V38-P762
LOESER JG-COMMUNICATION
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1986-J-CHEM-PHYS-V84-P3882
LOPEZCABRERA M-1992-PHYS-REV-LETT-V68-P1992
MIDTDAL J-1965-PHYS-REV-A-V138-P1010
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORGAN JD-1992-DIMENSIONAL-SCALING
MUR VD-1990-SOV-PHYS-JETP-V70-P16
NINHAM BW-1963-J-MATH-PHYS-V4-P679
PADE H-1892-ANN-ECOLE-NORMALE-V9-P1
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1987-PHYS-LETT-A-V124-P77
ROSENTHAL CM-1971-J-CHEM-PHYS-V55-P2474
ROST JM-1992-PHYS-REV-A-V46-P2410
SHAFER RE-1974-SIAM-J-NUMER-ANAL-V11-P447
SOKAL AD-1980-J-MATH-PHYS-V21-P261
SUKHATME U-1983-PHYS-REV-D-V28-P418
TAN AL-1992-DIMENSIONAL-SCALING
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
VANVLECK JH-1970-PURE-APPL-CHEM-V24-P235
WHITTAKER ET-1940-COURSE-MODERN-ANAL-P140
WILSON EB-1955-MOL-VIBRATIONS
WITTEN E-1980-NATO-ADV-STUDY-I-S-B-V59
WITTEN E-1980-PHYS-TODAY-V33-P38
WONG R-1989-ASYMPTOTIC-APPROXIMA-P116
Source item page count: 16
Publication Date: DEC 1
IDS No.: KA706
29-char source abbrev: J CHEM PHYS



Record 71 of 100
Author(s): GAVRILOV VE; GAVRILOVA TV
Title: ON THE OPTICAL-PROPERTIES OF A DENSE XENON PLASMA
Source: OPTIKA I SPEKTROSKOPIYA 1991, Vol 71, Iss 5, pp 736-737
No. cited references: 11
Addresses: GAVRILOV VE, SI VAVILOV STATE OPT INST, LENINGRAD, USSR.
KeywordsPlus: PULSED-DISCHARGE PLASMA; SPECTRUM; TUBE
Cited references: ANDREEV SI-1970-ZH-PRIKL-SPEKTROSK-V13-P988
ANDREEV SI-1971-ZHPS-V14-P310
BAKEEV AA-1969-RADIOTEKH-ELEKTRON+-V14-P1998
GAVRILOV VE-1986-OPT-SPEKTROSK+-V61-P1192
GAVRILOV VE-1985-OPT-SPEKTROSK+-V59-P426
GAVRILOV VE-1985-OPT-SPEKTROSK+-V59-P1012
GUNHTER K-1970-BEITR-PLASMASPHYSIK-V10-P469
GUNHTER K-1968-BEITR-PLASMASPHYSIK-V8-P383
KREPOSTNOV PI-1989-OPT-SPEKTROSK+-V67-P538
POPOVICH VE-1971-OPT-SPEKTROSK-V9-P627
VINOKUROV GN-1989-OPT-SPEKTROSK-V67-P452
Source item page count: 2
Publication Date: NOV
IDS No.: HM161
29-char source abbrev: OPT SPEKTROSK



Record 72 of 100
Author(s): LOPEZCABRERA M; GOODSON DZ; HERSCHBACH DR; MORGAN JD
Title: LARGE-ORDER DIMENSIONAL PERTURBATION-THEORY FOR H2+
Source: PHYSICAL REVIEW LETTERS 1992, Vol 68, Iss 13, pp 1992-1995
No. cited references: 38
Addresses: LOPEZCABRERA M, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
UNIV DELAWARE, DEPT PHYS & ASTRON, NEWARK, DE 19716.
KeywordsPlus: LARGE N-EXPANSION; 2-ELECTRON ATOMS; VARIABLE DIMENSIONALITY; QUANTUM-MECHANICS; GROUND-STATE; LIMIT; ENERGY; H-2+; 1/N-EXPANSION; INTERPOLATION
Abstract: An asymptotic expansion for the electronic energy of H-2(+) is developed in inverse powers of D, the spatial dimension, and the singularity structure in the D --> infinity limit is elucidated by analysis of the coefficients at large order (approximately 30 to 45). For the ground state and several excited states, Pade-Borel summation yields an accuracy of eight or more significant figures.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
AVERY J-1991-THEOR-CHIM-ACTA-V81-P1
BENDER CM-1982-PHYS-REV-A-V25-P1305
BREZIN E-1979-J-PHYS-LETT-PARIS-V40-PL511
BROWN WB-1966-J-CHEM-PHYS-V44-P3934
CIZEK J-1986-PHYS-REV-A-V33-P12
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
FRANTZ DD-1988-CHEM-PHYS-V126-P59
FRANTZ DD-1990-J-CHEM-PHYS-V92-P6668
FRANTZ DD-1989-PHYS-REV-A-V40-P1175
GOODSON DZ-IN-PRESS
GOODSON DZ-IN-PRESS-DIMENSIONAL
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
GRAFFI S-1970-PHYS-LETT-B-V32-P240
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
LOESER JG-1991-J-CHEM-PHYS-V95-P4525
LOESER JG-1987-J-CHEM-PHYS-V86-P3512
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
LOPEZCABRERA M-1991-THESIS-U-MICHIGAN-AN
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MORGAN JD-1980-INT-J-QUANTUM-CHEM-V17-P1143
MUR VD-1990-SOV-PHYS-JETP-V70-P16
NINHAM BW-1963-J-MATH-PHYS-V4-P679
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
SHAFER RE-1974-SIAM-J-NUMER-ANAL-V11-P447
SOKAL AD-1980-J-MATH-PHYS-V21-P261
VAINBERG VM-1990-SOV-PHYS-JETP-V71-P470
WHITTAKER ET-1940-COURSE-MODERN-ANAL
Source item page count: 4
Publication Date: MAR 30
IDS No.: HL670
29-char source abbrev: PHYS REV LETT



Record 73 of 100
Author(s): MUR VD; POPOV VS; SERGEEV AV
Title: GENERALIZATION OF THE GAMOW FORMULA TO THE MULTIDIMENSIONAL CASE
Source: SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR 1991, Vol 54, Iss 4, pp 575-581
No. cited references: 41
Addresses: MUR VD, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
KeywordsPlus: COUPLED ANHARMONIC OSCILLATORS; ELECTRIC-FIELD; RYDBERG ATOMS; STARK; 1/N-EXPANSION; RESONANCES; HYDROGEN
Abstract: A generalization of the Gamow formula for the width GAMMA of a quasistationary level (with energy E = E(r) - i-GAMMA/2) is given for the case of multidimensional systems with separable variables. The condition for applicability of this approximation is obtained, and some examples are considered.
Cited references: 1965-HDB-MATH-FUNCTIONS
ARNOLD VI-1978-MATH-METHODS-CLASSIC
BANKS T-1973-PHYS-REV-D-V8-P3346
BANKS T-1973-PHYS-REV-D-V8-P3366
CERJAN C-1978-INT-J-QUANTUM-CHEM-V14-P393
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DUBROVSKII GV-1979-DOKL-AKAD-NAUK-SSSR+-V245-P74
ENGDAHL E-1988-PHYS-REV-A-V37-P3777
FERMI E-1950-NUCLEAR-PHYSICS
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
GAMOW G-1928-Z-PHYS-V51-P204
JAFFE LG-1983-PHYS-TODAY-V36-P50
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
LANDAU LD-1977-QUANTUM-MECHANICS
MAQUET A-1983-PHYS-REV-A-V27-P2946
MARINOV MS-1977-FORTSCHR-PHYS-V25-P373
MORSE PM-1953-METHODS-THEORETICAL-V2
MUR VD-1987-JETP-LETT+-V45-P323
MUR VD-1990-PISMA-ESKP-TEOR-FIZ-V51-P499
MUR VD-1989-STARK-EFFECT-STRONG
MUR VD-1990-YAD-FIZ-V51-P390
MUR VD-1988-YAF-V47-P697
MUR VD-1989-ZH-EKSP-TEOR-FIZ+-V96-P91
ORLOV YV-1986-ITEP86140-PREPR-MOSC
ORLOV YV-1987-UKR-FIZ-ZH-V32-P1125
PERELOMOV AM-1966-ZH-EKSP-TEO-V51-P309
POPOV VS-1991-J-MOSCOW-PHYS-SOC-V1-P15
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1991-PISMA-ESKP-TEOR-FIZ-V53-P433
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1967-ZH-EKSP-TEO-V53-P331
POPOV VS-1972-ZH-EKSP-TEOR-FIZ-V63-P1586
POPOV VS-1971-ZH-EKSP-TEOR-FIZ+-V61-P1334
SCHMID A-1986-ANN-PHYS-NEW-YORK-V170-P333
SUMETSKII MY-1982-TEOR-MAT-FIZ-V36-P130
SUMETSKII MY-1980-TEOR-MATEM-FIZ-V45-P64
VAINBERG VM-1987-JETP-LETT+-V46-P178
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
Source item page count: 7
Publication Date: OCT
IDS No.: HG786
29-char source abbrev: SOV J NUCL PHYS-ENGL TR



Record 74 of 100
Author(s): PANJA MM; BAG M; DUTT R; VARSHNI YP
Title: LARGE-N EXPANSION METHOD FOR A SPIN-1/2 PARTICLE IN THE PRESENCE OF VECTOR AND SCALAR POTENTIALS
Source: PHYSICAL REVIEW A 1992, Vol 45, Iss 3, pp 1523-1530
No. cited references: 56
Addresses: PANJA MM, VISVA BHARATI UNIV, DEPT PHYS, SANTINIKETAN 731235, W BENGAL, INDIA.
UNIV OTTAWA, DEPT PHYS, OTTAWA K1N 6N5, ONTARIO, CANADA.
KeywordsPlus: SHIFTED 1/N EXPANSION; RELATIVISTIC PERTURBATION-THEORY; SCREENED COULOMB POTENTIALS; DIRAC-EQUATION; ENERGY-LEVELS; SCHRODINGER-EQUATION; HYDROGEN-ATOM; CENTRAL FIELD; BOUND-STATES; MODEL
Abstract: The shifted large-N technique (SLNT) has been applied to study the relativistic motion of a particle in the presence of vector and scalar interactions with special emphasis on the construction of both large- and small-component Dirac radial wave functions. Numerical results for the binding energy for a particle in the presence of the Coulomb plus linear confining potential compare very well with those obtained by the elaborate analytic approximation method using the Pade-approximation technique. We illustrate that one recovers not only the exact analytic results for binding energies for vector and scalar Coulomb potentials, but also exact wave functions from the leading-order SLNT calculation. This motivates future applications of the same method to more realistic atomic systems governed by screened Coulomb potentials where the knowledge of the large and small components of the radial wave function is essential.
Cited references: ABRAMOWITZ M-1964-HDB-MATH-FUNCTIONS
AHARONOV Y-1980-PHYS-REV-LETT-V44-PE619
AHARONOV Y-1979-PHYS-REV-LETT-V43-PE176
AHARONOV Y-1979-PHYS-REV-LETT-V42-P1582
ATAG S-1989-J-MATH-PHYS-V30-P696
AU CK-1980-PHYS-REV-A-V22-P1820
AU CK-1979-PHYS-REV-A-V20-P2245
BELL JS-UNPUB
CEA P-1982-PHYS-REV-D-V26-P1157
CHATTERJEE A-1986-J-MATH-PHYS-V27-P2331
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P735
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P1193
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P2403
CHATTERJEE A-1990-PHYS-REP-V186-P269
CRITCHFIELD CL-1976-J-MATH-PHYS-V17-P261
DAREWYCH JW-1971-PHYS-REV-A-V3-P502
DUTT R-1987-J-PHYS-B-AT-MOL-OPT-V20-P2437
DUTT R-1986-J-PHYS-B-AT-MOL-OPT-V19-P3411
DUTT R-1985-J-PHYS-B-AT-MOL-OPT-V18-P3311
DUTT R-1986-PHYS-REV-A-V34-P777
DUTT R-1986-Z-PHYS-D-ATOM-MOL-CL-V2-P207
FLUGGE S-1974-PRACTICAL-QUANTUM-ME
FROMAN N-1981-J-PHYS-PARIS-V42-P1491
GOLDMAN T-1975-PHYS-REV-D-V12-P2910
GREEN AES-1969-PHYS-REV-V184-P1
GREEN AES-1971-PHYS-REV-A-V4-P1
GREINER W-1990-RELATIVISTIC-QUANTUM
GUNION JF-1975-PHYS-REV-D-V12-P3583
IMBO T-1985-PHYS-REV-D-V31-P2655
IMBO T-1984-PHYS-REV-D-V29-P1669
KANG JS-1975-PHYS-REV-D-V12-P841
MAGYARI E-1980-PHYS-LETT-B-V95-P295
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MCENNAN J-1977-PHYS-REV-A-V16-P1768
MIKHAILOV AI-1968-SOV-PHYS-JETP-V27-P95
MIRAMONTES JL-1984-NUOVO-CIMENTO-B-V84-P10
MUSTAFA O-1991-PHYS-REV-A-V44-P4142
NIETO MM-1979-AM-J-PHYS-V47-P1067
PANJA MM-1990-PHYS-REV-A-V42-P106
PANJA MM-1988-PHYS-REV-A-V38-P3937
PAPP E-1991-PHYS-LETT-B-V259-P19
PAPP E-1991-PHYS-SCRIPTA-V43-P14
RAM B-1979-PHYS-REV-D-V19-P841
ROGERS GW-1984-PHYS-REV-A-V30-P35
ROSE ME-1961-RELATIVISTIC-ELECTRO
ROY B-1990-J-PHYS-A-MATH-GEN-V23-P3555
ROYCHOUDHURY R-1989-PHYS-REV-A-V39-P5523
ROYCHOUDHURY RK-1987-J-PHYS-A-MATH-GEN-V20-PL1083
RUTKOWSKI A-1986-J-PHYS-B-AT-MOL-OPT-V19-P149
RUTKOWSKI A-1986-J-PHYS-B-AT-MOL-OPT-V19-P3431
SERGEEV AV-1984-SOV-J-NUCL-PHYS+-V39-P731
SOFF G-1973-Z-NATURFORSCH-A-V28-P1384
SU JY-1985-PHYS-REV-A-V32-P3251
SUKHATME U-1983-PHYS-REV-D-V28-P418
VRSCAY ER-1988-PHYS-LETT-A-V130-P141
WONG MKF-1990-J-MATH-PHYS-V31-P1677
Source item page count: 8
Publication Date: FEB 1
IDS No.: HC995
29-char source abbrev: PHYS REV A



Record 75 of 100
Author(s): POPOV VS; MUR VD; SERGEEV AV
Title: QUANTIZATION RULES WITH ALLOWANCE FOR BARRIER PENETRATION
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1991, Vol 100, Iss 1, pp 20-44
No. cited references: 50
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
MOSCOW ENGN PHYS INST, MOSCOW, USSR.
SI VAVILOV STATE OPT INST, LENINGRAD, USSR.
KeywordsPlus: COUPLED ANHARMONIC OSCILLATORS; UNIFORM ELECTRIC-FIELD; HYDROGEN-ATOM; INTERFERENCE PHENOMENA; VACUUM POLARIZATION; PERTURBATION-THEORY; WKB APPROXIMATION; RYDBERG ATOMS; RESONANCES; STATES
Abstract: A correction to the quasiclassical quantization rules is found which is connected with the taking into account of the barrier penetration. The equation derived defines both the position E(r) and width GAMMA of the quasistationary level. The results are compared with numerical solutions of the Schrodinger equation and with the exactly soluble models. A generalization of the Gamov formula for systems with separated variables is obtained. The possibility of extending the results to the relativistic case is discussed.
Cited references: ABRAMOVITTS M-1979-SPRAVOCHNIK-SPETSIAL
BANKS T-1973-PHYS-REV-D-V8-P3346
BANKS T-1973-PHYS-REV-D-V8-P3366
BATEMAN H-1953-HIGHER-TRANSCENDENTA-V1
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
BENDER CM-1977-PHYS-REV-D-V16-P1740
BULGAKOV BV-1954-KOLEBANIYA
CASE KM-1950-PHYS-REV-V80-P797
CONNOR JNL-1973-MOL-PHYS-V25-P1469
DRUKAREV GF-1978-ZH-EKSP-TEOR-FIZ+-V75-P473
DUBROVSKII GV-1979-DOKL-AKAD-NAUK-SSSR+-V245-P74
DUNHAM JL-1932-PHYS-REV-V41-P713
GLAB WL-1985-PHYS-REV-A-V31-P3677
GURVITZ SA-1988-PHYS-REV-A-V38-P1747
KESARWANI RN-1981-J-MATH-PHYS-V22-P1983
KESARWANI RN-1980-J-MATH-PHYS-V21-P90
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
KOMAROV IV-1976-SFEROIDALNYE-KULONOV
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
LANDAU LD-1974-KVANTOVAYA-MEKHANIKA
MANAKOV NL-1989-ZH-EKSP-TEOR-FIZ+-V95-P1167
MARINOV MS-1975-J-PHYS-A-MATH-GEN-V8-P1575
MARINOV MS-1974-ZH-EKSP-TEOR-FIZ+-V67-P1250
MIGDAL AB-1975-KACHESTVENNYE-METODY
MIGDAL AB-1973-NUCL-PHYS-B-VB 52-P483
MIGDAL AB-1971-ZH-EKSP-TEOR-FIZ-V61-P2209
MUR VD-1989-ITEF9389-PREPR
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1989-ZH-EKSP-TEOR-FIZ+-V96-P91
NG K-1987-PHYS-REV-A-V35-P2508
PIEPER W-1969-Z-PHYS-V218-P327
POMERANCHUK I-1945-J-PHYS-USSR-V9-P315
POPOV VS-1989-IC89320-PREPR
POPOV VS-1991-J-MOSCOW-PHYS-SOC-V1-P15
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1970-JETP-LETT+-V11-P254
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1978-PHYS-LETT-B-V80-P68
POPOV VS-1986-YAD-FIZ-V44-P1103
POPOV VS-1970-YAD-FIZ-V12-P429
POPOV VS-1972-YAF-V15-P1069
POPOV VS-1979-ZH-EKSP-TEOR-FIZ+-V76-P432
RICE MH-1962-J-OPT-SOC-AM-V52-P239
SCHMID A-1986-ANN-PHYS-NEW-YORK-V170-P333
SOFF G-1988-PHYS-REV-A-V38-P5066
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
ZELDOVICH YB-1971-USP-FIZ-NAUK-V105-P403
Source item page count: 25
Publication Date: JUL
IDS No.: GC903
29-char source abbrev: ZH EKSP TEOR FIZ



Record 76 of 100
Author(s): ALVAREZ G; DAMBURG RJ; SILVERSTONE HJ
Title: PHOTOIONIZATION OF ATOMIC-HYDROGEN IN AN ELECTRIC-FIELD
Source: PHYSICAL REVIEW A 1991, Vol 44, Iss 5, pp 3060-3082
No. cited references: 48
Addresses: ALVAREZ G, UNIV COMPLUTENSE MADRID, DEPT FIS TEOR, E-28040 MADRID, SPAIN.
ACAD SCI LASSR, INST PHYS, RIGA 226006, LATVIA, USSR.
JOHNS HOPKINS UNIV, DEPT CHEM, BALTIMORE, MD 21218.
KeywordsPlus: PHOTOABSORPTION CROSS-SECTIONS; STARK-INDUCED RESONANCES; INTERFERENCE PHENOMENA; PERTURBATION-THEORY; SHAPE RESONANCES; RYDBERG ATOMS; IONIZATION; SPECTRUM; STATES; 1/N-EXPANSION
Abstract: The photoionization cross section of atomic hydrogen in an electric field can be understood as the sum of resonance contributions. Each contribution is proportional to the imaginary part of the square of a complex transition-dipole matrix element divided by an energy denominator and has a naturally asymmetric line shape. The main features of experiments, including asymmetry of the lines, blue shift of maxima with respect to calculated resonances near zero energy, "field-induced" structure above zero energy, and increasing "background" that begins above the classical saddle-point energy, are reproduced via variational calculations of the resonance energies and wave functions in parabolic coordinates.
Cited references: ABRAMOWITZ M-1964-NBS-APPLIED-MATH-SER-V55
ALIJAH A-1986-J-PHYS-B-AT-MOL-OPT-V19-P2617
ALVAREZ G-1989-PHYS-REV-A-V40-P3690
ALVAREZ G-1989-PHYS-REV-LETT-V63-P1364
BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
BERGEMAN T-1984-PHYS-REV-LETT-V53-P775
COHEN ER-1989-PHYS-TODAY-V42-PBG8
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
DELANDE D-1991-PHYS-REV-LETT-V66-P141
FANO U-1961-PHYS-REV-V124-P1866
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
GOLUB GH-1989-MATRIX-COMPUTATIONS-P359
GRAFFI S-1978-COMMUN-MATH-PHYS-V62-P83
HARMIN DA-1985-PHYS-REV-A-V31-P2984
HARMIN DA-1981-PHYS-REV-A-V24-P2491
HERBST IW-1979-COMMUN-MATH-PHYS-V64-P279
HUMBLET J-1952-MEM-SOC-ROY-SCI-LIEG-V12-P7
HUMBLET J-1961-NUCL-PHYS-V26-P529
ITZYKSON C-1980-QUANTUM-FIELD-THEORY
JOHNSON WR-1985-ATOM-DATA-NUCL-DATA-V33-P405
KOLOSOV VV-1989-J-PHYS-B-AT-MOL-OPT-V22-P833
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
KONDRATOVICH VD-1990-J-PHYS-B-AT-MOL-OPT-V23-P21
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
LUCKOENIG E-1980-J-PHYS-B-AT-MOL-OPT-V13-P1743
LUCKOENIG E-1980-J-PHYS-B-AT-MOL-OPT-V13-P1769
LUDERS G-1951-ANN-PHYS-V8-P301
MAQUET A-1983-PHYS-REV-A-V27-P2946
MUR VD-1988-JETP-LETT+-V48-P70
MUR VD-1988-ZH-EKSP-TEOR-FIZ+-V67-P2027
NG K-1987-PHYS-REV-A-V35-P2508
NICOLAIDES CA-1990-NATO-ADV-STUDY-I-S-B-V212
POLIK WF-1988-J-CHEM-PHYS-V89-P3584
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
RESCIGNO TN-1976-J-CHEM-PHYS-V64-P477
RESCIGNO TN-1975-PHYS-REV-A-V12-P522
ROTTKE H-1986-PHYS-REV-A-V33-P301
SCHRODINGER E-1926-ANN-PHYSIK-V80-P437
SILVERSTONE HJ-1990-NATO-ADV-STUDY-I-S-B-P295
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
SIMON B-1970-ANN-PHYS-V58-P76
TELNOV DA-1989-J-PHYS-B-AT-MOL-OPT-V22-PL399
VAINBERG VM-1986-JETP-LETT+-V44-P9
YAMABE T-1977-PHYS-REV-A-V16-P877
Source item page count: 23
Publication Date: SEP 1
IDS No.: GE936
29-char source abbrev: PHYS REV A



Record 77 of 100
Author(s): POPOV VS; MUR VD; SERGEEV AV
Title: QUANTIZATION RULES FOR QUASI-STATIONARY STATES
Source: PHYSICS LETTERS A 1991, Vol 157, Iss 4-5, pp 185-191
No. cited references: 21
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
KeywordsPlus: STRONG ELECTRIC-FIELD; HYDROGEN-ATOM; 1/N-EXPANSION
Abstract: The modification of the Bohr-Sommerfeld quantization rules, which is due to the barrier penetrability, is found. The equation obtained is valid for an arbitrary analytical potential U(x), obeying the quasiclassical conditions. It determines both the position E(r) and the width-GAMMA of the quasistationary state. A generalization of the Gamow formula for multidimensional systems with separable coordinates is derived. A comparison with exactly solvable models as well as with numerical solutions of the Schrodinger equation for the Stark problem is performed.
Cited references: CASE KM-1950-PHYS-REV-V80-P797
CONNOR JNL-1973-MOL-PHYS-V25-P1469
GAMOW G-1928-Z-PHYS-V51-P204
HEADING J-1962-INTRO-PHASE-INTEGRAL
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
LANDAU LD-1977-QUANTUM-MECHANICS
MARINOV MS-1975-J-PHYS-A-MATH-GEN-V8-P1575
MARINOV MS-1974-ZH-EKSP-TEOR-FIZ+-V67-P1250
MORSE PM-1953-METHODS-THEORETICAL-P1665
MUR VD-1990-JETP-LETT+-V51-P499
MUR VD-1988-JETP-LETT+-V48-P67
PERELOMOV AM-1970-TEOR-MAT-FIZ-V4-P48
POPOV VS-1991-ITEP37-PREPR
POPOV VS-1991-J-MOSCOW-PHYS-SOC-V1-P15
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
POPOV VS-1987-PHYS-LETT-A-V124-P77
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1986-JETP-LETT+-V44-P9
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
YAMABE T-1977-PHYS-REV-A-V16-P877
Source item page count: 7
Publication Date: JUL 29
IDS No.: GA879
29-char source abbrev: PHYS LETT A



Record 78 of 100
Author(s): POPOV VS; MUR VD; SERGEV AV
Title: GENERALIZATION OF THE GAMOW FORMULA TO THE MULTIDIMENSIONAL CASE
Source: JETP LETTERS 1991, Vol 53, Iss 9, pp 455-458
No. cited references: 9
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, USSR.
MOSCOW ENGN PHYS INST, MOSCOW 115409, USSR.
SI VAVILOV STATE OPT INST, LENINGRAD 199034, USSR.
Abstract: The Gamow formula for a level width is generalized to the case of multidimensional systems with separable variables. A condition for the applicability of this approximation is found.
Cited references: CONNOR JNL-1973-MOL-PHYS-V25-P1469
GAMOW G-1928-Z-PHYS-V51-P204
LANDAU LD-1989-QUANTUM-MECHANICS
MUR VD-1989-ITEF9389-I-THEOR-EXP
MUR VD-1990-JETP-LETT+-V51-P563
POPOV VS-1989-IC89320-PREPR
POPOV VS-1990-PHYS-LETT-A-V149-P418
POPOV VS-1990-PHYS-LETT-A-V149-P425
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
Source item page count: 4
Publication Date: MAY 10
IDS No.: GA007
29-char source abbrev: JETP LETT-ENGL TR



Record 79 of 100
Author(s): GOODSON DZ; MORGAN JD; HERSCHBACH DR
Title: DIMENSIONAL SINGULARITY ANALYSIS OF RELATIVISTIC-EQUATIONS
Source: PHYSICAL REVIEW A 1991, Vol 43, Iss 9, pp 4617-4624
No. cited references: 42
Addresses: GOODSON DZ, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
HARVARD SMITHSONIAN CTR ASTROPHYS, INST THEORET ATOM & MOLEC PHYS, CAMBRIDGE, MA 02138.
KeywordsPlus: LARGE-N EXPANSION; 2-ELECTRON ATOMS; SCHRODINGER-EQUATION; PERTURBATION-THEORY; VARIABLE DIMENSIONALITY; CLASSICAL MECHANICS; QUANTUM-MECHANICS; HYDROGEN-ATOM; 1/N EXPANSION; ENERGY-LEVELS
Abstract: For a nonrelativistic hydrogenic atom, the dimension dependence of the energy levels is non-singular except for a second-order pole at D* = 3 - 2n, where n is the principal quantum number. For the relativistic Klein-Gordon and Dirac equations, the dimension dependence has a much more complicated singularity structure, involving branch points. For all eigenstates there are branch points at D+ +/- 2Z-alpha, where Z is the nuclear charge, alpha is the fine-structure constant, and D+ is independent of n but varies linearly with orbital angular momentum. For most states there is in addition a pair of branch points near D* but slightly off the real axis. The customary perturbation expansion in terms of Z-alpha gives qualitatively incorrect dimension dependence; it predicts only poles located on the real axis at D* and D+, no matter how high the order of the expansion. The dimensional singularities result from the behavior at r = 0. The qualitatively incorrect results occur because the perturbing potential, proportional to alpha-2/r2, overwhelms the unperturbed 1/r potential at small r. Because of the complexity of the dimensional singularity structure, the popular "shifted expansion" method for summing the 1/D expansion does not work well for these equations. We demonstrate a general method for identifying the dimensional singularities that leads to an exact summation of the 1/D expansion for all eigenstates of both the Klein-Gordon and the Dirac equations for a particle in a Coulomb potential.
Cited references: ADER JP-1983-PHYS-LETT-A-V97-P178
AVERY J-IN-PRESS-THEOR-CHIM
BAKER GA-1981-ENCY-MATH-ITS-APPLIC-V14
BAKER GA-1981-ENCY-MATH-ITS-APPLIC-V13
BAKER JD-1990-PHYS-REV-A-V41-P1247
BAYM G-1973-LECTURES-QUANTUM-MEC-P563
BENDER CM-1982-PHYS-REV-A-V25-P1305
BERVILLIER C-1978-PHYS-REV-D-V17-P2144
CHATTERJEE A-1990-PHYS-REP-V186-P249
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1987-J-CHEM-PHYS-V87-P433
DOREN DJ-1986-J-CHEM-PHYS-V85-P4557
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DOREN DJ-1986-PHYS-REV-A-V34-P2665
FRANTZ DD-1988-CHEM-PHYS-V126-P59
GOODSON DZ-1987-J-CHEM-PHYS-V86-P4997
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1631
GOSCINSKI O-1986-INT-J-QUANTUM-CHEM-V29-P897
HERRICK DR-1975-J-MATH-PHYS-V16-P281
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1989-AT-PHYS-V11-P63
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HERSCHBACH DR-1988-Z-PHYS-D-ATOM-MOL-CL-V10-P195
KATO T-1966-PERTURBATION-THEORY
LOESER JG-1987-J-CHEM-PHYS-V86-P2114
LOESER JG-1987-J-CHEM-PHYS-V86-P5635
LOESER JG-1985-J-PHYS-CHEM-US-V89-P3444
MARTIN PC-1958-PHYS-REV-V109-P1307
MIRAMONTES JL-1984-NUOVO-CIMENTO-B-V84-P10
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
NIETO MM-1979-AM-J-PHYS-V47-P1067
PANJA MM-1990-PHYS-REV-A-V42-P106
PANJA MM-1988-PHYS-REV-A-V38-P3937
POPOV VS-1986-SOV-J-NUCL-PHYS+-V44-P714
ROSENTHAL CM-1971-J-CHEM-PHYS-V55-P2474
ROYCHOUDHURY R-1989-PHYS-REV-A-V39-P5523
SUKHATME U-1983-PHYS-REV-D-V28-P418
VAINBERG VM-1986-JETP-LETT+-V44-P9
VANDERMERWE PD-1988-PHYS-REV-A-V38-P1187
WITTEN E-1980-NATO-ADV-STUDY-I-S-B-V59
WITTEN E-1980-PHYS-TODAY-V33-P38
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
Source item page count: 8
Publication Date: MAY 1
IDS No.: FL111
29-char source abbrev: PHYS REV A



Record 80 of 100
Author(s): KOLOSOV VV
Title: THE STARK RESONANCES NEAR ZERO ENERGY
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1991, Vol 24, Iss 7, pp L185-L188
No. cited references: 14
Addresses: KOLOSOV VV, ACAD SCI LASSR, INST PHYS, SALASPILS 229021, LATVIA, USSR.
KeywordsPlus: UNIFORM ELECTRIC-FIELD; HYDROGEN-ATOM; INTERFERENCE PHENOMENA; PERTURBATION-THEORY; STATES; PHOTOIONIZATION; PHOTOIONISATION
Abstract: Simple formulae for the energies and widths of the Stark levels in the neighbourhood of the zero-field ionization threshold are deduced. Comparison with the results of exact numerical calculation shows that the formulae obtained are of high accuracy for both the negative and positive energy regions.
Cited references: ABRAMOWITZ M-1964-HDB-MATH-FUNCTIONS
ALVAREZ G-1989-PHYS-REV-LETT-V63-P1367
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
FERANCHUK ID-1989-PHYS-LETT-A-V137-P385
GLAB WL-1985-PHYS-REV-A-V31-P3677
KAZANSKY AK-1990-J-PHYS-B-AT-MOL-OPT-V23-PL433
KOLOSOV VV-1989-J-PHYS-B-AT-MOL-OPT-V22-P833
KOLOSOV VV-1988-OPT-SPEKTROSK+-V65-P251
KONDRATOVICH VD-1990-J-PHYS-B-AT-MOL-OPT-V23-P21
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
MUR VD-1989-ZH-EKSP-TEOR-FIZ+-V96-P91
NG K-1987-PHYS-REV-A-V35-P2508
ROTTKE H-1986-PHYS-REV-A-V33-P301
Source item page count: 4
Publication Date: APR 14
IDS No.: FJ566
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 81 of 100
Author(s): VAINBERG VM; POPOV VS; SERGEYEV AV
Title: 1/N-EXPANSION FOR THE HYDROGEN-ATOM IN AN EXTERNAL-FIELD
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1990, Vol 98, Iss 3, pp 847-860
No. cited references: 26
Addresses: VAINBERG VM, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
KeywordsPlus: MAGNETIC-FIELD; PERTURBATION-THEORY; STARK; STATES
Cited references: ANOKHIN SB-1983-VESTN-LENIN-U-FIZ-KH-P65
BEIKER D-1986-APPROKSIMATSII-PADE
BENDER CM-1982-PHYS-REV-A-V25-P1305
JOHNSON BR-1983-PHYS-REV-LETT-V51-P2280
LAMBIN P-1978-AM-J-PHYS-V46-P1144
LARSEN DM-1979-PHYS-REV-B-V20-P5217
LISITSA VS-1987-USP-FIZ-NAUK+-V153-P379
MANAKOV NL-1986-ZH-EKSP-TEOR-FIZ+-V91-P404
MUR VD-1990-ZH-EKSP-TEOR-FIZ+-V97-P32
POPOV VS-1985-ITEF178-PREPR
POPOV VS-1986-ITEF8669-PREPR
POPOV VS-1986-JETP-LETT+-V41-P439
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1986-YAD-FIZ-V44-P1103
RICHTER K-1987-J-PHYS-B-AT-MOL-OPT-V20-PL627
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
STEBBINGS R-1985-RIDBERGOVSKIE-SOSTOY
TURBINER AV-1984-J-PHYS-A-MATH-GEN-V17-P859
TURBINER AV-1981-JETP-LETT+-V33-P181
TURBINER AV-1989-ZH-EKSP-TEOR-FIZ+-V95-P1152
TURBINER AV-1983-ZH-EKSP-TEOR-FIZ+-V84-P1329
UITTEKER ET-1933-KURS-SOVREMENNOGO-AN-V1
VAINBERG VM-1989-ITEF16089-PREPR
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1988-TEOR-MAT-FIZ-V74-P399
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
Source item page count: 14
Publication Date: SEP
IDS No.: EJ551
29-char source abbrev: ZH EKSP TEOR FIZ



Record 82 of 100
Author(s): KONDRATOVICH VD; OSTROVSKY VN
Title: RESONANCE AND INTERFERENCE PHENOMENA IN THE PHOTOIONIZATION OF A HYDROGEN-ATOM IN A UNIFORM ELECTRIC-FIELD .4. DIFFERENTIAL CROSS-SECTIONS
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1990, Vol 23, Iss 21, pp 3785-3809
No. cited references: 16
Addresses: KONDRATOVICH VD, VINNITSA POLYTECH INST, VINNITSA 286021, UKRAINE, USSR.
LENINGRAD STATE UNIV, LENINGRAD 198904, USSR.
Cited references: BERRY MV-1982-J-PHYS-A-MATH-GEN-V15-PL385
DEMKOV YN-1981-JETP-LETT+-V34-P403
FABRIKANT II-1980-ZH-EKSP-TEOR-FIZ+-V52-P1045
FEYNMAN RP-1977-LECTURES-PHYSICS-V3
FREEMAN RR-1979-PHYS-REV-A-V20-P2356
GLAB WL-1985-PHYS-REV-A-V31-P530
KONDRATOVICH VD-1990-J-PHYS-B-AT-MOL-OPT-V23-P21
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
KONDRATOVICH VD-1986-PROBLEMS-THEORY-ATOM-V3-P165
LANDAU LD-1965-QUANTUM-MECHANICS
LIBERMAN S-1979-PHYS-REV-A-V20-P507
MANAKOV NL-1986-PHYS-REP-V141-P319
ROTTKE H-1986-PHYS-REV-A-V33-P301
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
Source item page count: 25
Publication Date: NOV 14
IDS No.: EJ065
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 83 of 100
Author(s): MUR VD; POPOV VS
Title: QUANTIZATION WITH ALLOWANCE FOR THE BARRIER PENETRATION
Source: JETP LETTERS 1990, Vol 51, Iss 10, pp 563-567
No. cited references: 6
Addresses: MUR VD, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
Cited references: BEKENSTEIN JD-1969-PHYS-REV-V188-P130
DUNHAM JL-1932-PHYS-REV-V41-P713
LANDAU LD-1977-QUANTUM-MECHANICS
LISITSA VS-1987-SOV-PHYS-USP-V30-P195
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V66-P258
Source item page count: 5
Publication Date: MAY 25
IDS No.: DW030
29-char source abbrev: JETP LETT-ENGL TR



Record 84 of 100
Author(s): SERGEEV AV
Title: 1/N EXPANSION FOR THE 3-BODY PROBLEM
Source: SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR 1989, Vol 50, Iss 4, pp 589-592
No. cited references: 14
Addresses: SERGEEV AV, SI VAVILOV STATE OPT INST, LENINGRAD, USSR.
Cited references: ADAMOV MN-VESTN-LENIN-U-FIZ-KH-P73
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1986-J-CHEM-PHYS-V85-P4557
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HASHINO T-1987-PHYS-LETT-A-V123-P236
HERRICK DR-1975-PHYS-REV-A-V11-P42
MIDTDAL J-1965-PHYS-REV-A-V138-P1010
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
PERKINS CL-1959-PHYS-REV-V115-P1216
SERGEEV AV-1983-P-ALL-UNION-C-ATOMIC-P66
SERGEEV AV-1984-SOV-J-NUCL-PHYS+-V39-P731
VANDERMERWE PD-1984-J-CHEM-PHYS-V81-P5976
VANDERMERWE PD-1988-PHYS-REV-A-V38-P1187
VANDERMERWE PD-1986-PHYS-REV-D-V33-P3383
Source item page count: 4
Publication Date: OCT
IDS No.: CY908
29-char source abbrev: SOV J NUCL PHYS-ENGL TR



Record 85 of 100
Author(s): MUR VD; POPOV VS; SERGEYEV AV
Title: THE 1/N-EXPANSION IN QUANTUM-MECHANICS
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1990, Vol 97, Iss 1, pp 32-46
No. cited references: 41
Addresses: MUR VD, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
MOSCOW ENGN PHYS INST, MOSCOW, USSR.
Cited references: 1988-PHYS-LETT-B-V204-P1
BADALYAN AM-1987-NUCL-PHYS-B-V281-P85
BADALYAN AM-1987-YAF-V46-P226
BATES DR-1961-QUANTUM-THEORY-V1-P127
BAZ AI-1971-RASSEYANIE-REAKTSII
BENDER CM-1982-PHYS-REV-A-V25-P1305
DEMKOV YN-1972-ZH-EKSP-TEOR-FIZ-V62-P125
DOLGOV AD-1979-ITEF72-PREPR
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
EICHTEN E-1980-PHYS-REV-D-V21-P203
EICHTEN E-1980-PHYS-REV-D-V21-P313
EICHTEN E-1978-PHYS-REV-D-V17-P3090
GLAUBER RJ-1963-PHYS-REV-V131-P2766
GOODSON DZ-1987-PHYS-REV-LETT-V58-P1628
HERRICK DR-1975-PHYS-REV-A-V11-P42
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1985-PHYS-REV-D-V31-P2655
KOMAROV IV-1976-SFEROIDALNYE-KULONOV
LAI CH-1987-J-MATH-PHYS-V28-P1801
MALUENDES SA-1987-PHYS-LETT-A-V124-P215
MALUENDES SA-1987-PHYS-REV-A-V36-P1452
MALUENDES SA-1986-PHYS-REV-D-V34-P1835
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MUR VD-1989-ITEP1489-PREPR
MUR VD-1987-JETP-LETT+-V45-P323
MUR VD-1988-YAF-V47-P697
PAGNAMENTA A-1986-PHYS-REV-D-V34-P3528
POPOV VS-1989-ITEF113-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1986-YAD-FIZ-V44-P1103
SHAPIRO IS-1978-PHYS-REP-V35-P129
SOLOVYOV EA-1981-ZH-EKSP-TEOR-FIZ+-V81-P1681
TIETZ T-1956-J-CHEM-PHYS-V25-P787
VAINBERG VM-1987-JETP-LETT+-V46-P178
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1988-TEOR-MAT-FIZ-V74-P399
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
VANDERMERWE PD-1986-PHYS-REV-D-V33-P3383
WITTEN E-1979-NUCL-PHYS-B-V149-P285
ZELDOVICH YB-1960-USP-FIZ-NAUK-V71-P581
Source item page count: 15
Publication Date: JAN
IDS No.: CR130
29-char source abbrev: ZH EKSP TEOR FIZ



Record 86 of 100
Author(s): KONDRATOVICH VD; OSTROVSKY VN
Title: RESONANCE AND INTERFERENCE PHENOMENA IN THE PHOTIONISATION OF A HYDROGEN-ATOM IN A UNIFORM ELECTRIC-FIELD .3. COMPARISON WITH RECENT EXPERIMENTAL AND THEORETICAL RESULTS
Source: JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 1990, Vol 23, Iss 1, pp 21-43
No. cited references: 31
Addresses: KONDRATOVICH VD, VINNITSA POLYTECH INST, VINNITSA 286021, UKRAINE, USSR.
LENINGRAD STATE UNIV, LENINGRAD 198904, USSR.
Cited references: ANSELM AI-1978-VVEDENIE-TEORIYU-POL
BERGEMAN T-1984-PHYS-REV-LETT-V53-P775
BRYANT HC-1987-PHYS-REV-LETT-V58-P2412
DACHKOV LG-1987-OPT-SPEKTROSK+-V63-P250
DACHKOV LG-1986-OPT-SPEKTROSK+-V61-P688
DAMBURG RJ-1987-LAFI108-SAL-PREPR
FABRIKANT II-1980-ZH-EKSP-TEOR-FIZ+-V52-P1045
FANO U-1961-PHYS-REV-V124-P1866
FENEUILLE S-1979-PHYS-REV-LETT-V42-P1404
FREEMAN RR-1978-PHYS-REV-LETT-V41-P1463
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
HARMIN DA-1985-PHYS-REV-A-V31-P2984
HARMIN DA-1982-PHYS-REV-A-V26-P2656
HARMIN DA-1981-PHYS-REV-A-V24-P2491
KOENIG EL-1980-J-PHYS-B-ATOM-MOL-PH-V13-P1743
KOENIG EL-1980-J-PHYS-B-ATOM-MOL-PH-V13-P1769
KOLOSOV VV-1986-JETP-LETT+-V44-P457
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
KONDRATOVICH VD-1983-ZH-EKSP-TEOR-FIZ+-V56-P719
KONDRATOVICH VD-1981-ZH-EKSP-TEOR-FIZ+-V52-P198
LUK TS-1981-PHYS-REV-LETT-V47-P83
MORSE PM-1953-METHODS-THEORETICA-1-PCH4
POPOV VS-1987-ATOMINFORM-N182-PREP
RAU ARP-1980-PHYS-REV-A-V21-P1057
REINHARDT WP-1983-J-PHYS-B-AT-MOL-OPT-V16-PL635
ROTTKE H-1986-PHYS-REV-A-V33-P301
STEWART JE-1987-LA11152T-LOS-AL
WEINBERG VM-1987-JETP-LETT+-V46-P178
WEINBERG VM-1987-ZH-EKSP-TEOR-FIZ+-V93-P450
Source item page count: 23
Publication Date: JAN 14
IDS No.: CJ109
29-char source abbrev: J PHYS-B-AT MOL OPT PHYS



Record 87 of 100
Author(s): MUR VD; POPOV VS; SERGEEV AV; SHCHEBLYKIN AV
Title: STARK RESONANCES AND SCALING IN RYDBERG ATOMS
Source: ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 1989, Vol 96, Iss 1, pp 91-106
No. cited references: 39
Addresses: MUR VD, MOSCOW ENGN PHYS INST, MOSCOW, USSR.
MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
Cited references: ABRAMOVITS M-1979-SPRAVOCHNIK-SPETSIAL
BEKENSTEIN JD-1969-PHYS-REV-V188-P130
BENASSI L-1980-J-PHYS-B-AT-MOL-OPT-V13-P911
DAMBURG RJ-1979-J-PHYS-B-AT-MOL-OPT-V12-P2637
DAMBURG RJ-1978-J-PHYS-B-AT-MOL-OPT-V11-P1921
DAMBURG RJ-1976-J-PHYS-B-AT-MOL-OPT-V9-P3149
DAMBURG RJ-1983-RYDBERG-STATES-ATOMS-P42
DEMKOV YN-1964-ZH-EKSP-TEOR-FIZ-V47-P918
DRUKAREV GF-1978-ZH-EKSP-TEOR-FIZ+-V75-P473
FOCK V-1935-Z-PHYSIK-V98-P145
FRANCESCHINI V-1985-PHYS-REV-A-V32-P1338
FREEMAN RR-1979-PHYS-REV-A-V20-P2356
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
KADOMTSEV MB-1981-ZH-EKSP-TEOR-FIZ+-V80-P1715
KOLOSOV VV-1987-J-PHYS-B-AT-MOL-OPT-V20-P2359
KOLOSOV VV-1986-PISMA-ZHETF-V44-P457
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P1981
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
LANDAU LD-1974-KVANTOVAYA-MEKHANIKA
LISITSA VS-1987-USP-FIZ-NAUK+-V153-P379
LUK TS-1981-PHYS-REV-LETT-V47-P83
MUR VD-1988-ITEF18-PREPR
MUR VD-1989-ITEF9389-PREPR
MUR VD-1988-JETP-LETT+-V48-P67
NG K-1987-PHYS-REV-A-V35-P2508
PARK D-1960-Z-PHYS-V159-P155
POPOV VS-1989-ITEP-N6189-PREPR
POPOV VS-1986-ITEP86125-PREPR
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1987-PHYS-LETT-A-V124-P77
POPOV VS-1986-YAD-FIZ-V44-P1103
RICE MH-1962-J-OPT-SOC-AM-V52-P239
SANDNER W-1981-PHYS-REV-A-V23-P2448
VAINBERG VM-1987-JETP-LETT+-V46-P178
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
YAMABE T-1977-PHYS-REV-A-V16-P877
YAO DH-1987-PHYS-REV-A-V36-P4072
Source item page count: 16
Publication Date: JUL
IDS No.: AJ918
29-char source abbrev: ZH EKSP TEOR FIZ



Record 88 of 100
Author(s): VAINBERG VM; MUR VD; POPOV VS; SERGEEV AV; SHCHEBLYKIN AV
Title: THE 1/N EXPANSION IN QUANTUM-MECHANICS
Source: THEORETICAL AND MATHEMATICAL PHYSICS 1988, Vol 74, Iss 3, pp 269-278
No. cited references: 30
Cited references: AHARONOV Y-1979-PHYS-REV-A-V20-P2245
AHARONOV Y-1979-PHYS-REV-LETT-V42-P1582
BADALYAN AM-1987-NUCL-PHYS-B-V281-P85
BAKER J-1986-PADE-APPROXIMATION
BENDER CM-1982-PHYS-REV-A-V25-P1305
BYKOV AA-1984-USP-FIZ-NAUK+-V143-P3
DOLGOV AD-1979-72-I-THEOR-EXP-PHYS
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DOLGOV AD-1980-ZH-EKSP-TEOR-FIZ+-V79-P1704
DOLGOV AD-1978-ZH-EKSP-TEOR-FIZ+-V75-P2010
EICHTEN E-1978-PHYS-REV-D-V17-P3090
KESARWANI RN-1978-J-MATH-PHYS-V19-P819
LANDAU LD-1965-QUANTUM-MECHANICS-NO
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
POPOV VS-1985-178-I-THEOR-EXP-PHYS
POPOV VS-1985-JETP-LETT+-V41-P439
POPOV VS-1986-YAD-FIZ-V44-P1103
ROGERS FJ-1970-PHYS-REV-A-V1-P1577
SERGEEV AV-1983-METHODS-ATOMIC-CALCU-P149
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
SINGH D-1984-PHYS-REV-A-V29-P2895
STEBBINS RF-1983-RYDBERG-STATES-ATOMS
SUKHATME U-1983-PHYS-REV-D-V28-P418
TURBINER AV-1984-USP-FIZ-NAUK+-V144-P35
TURBINER AV-1980-ZH-EKSP-TEOR-FIZ+-V79-P1719
VAINBERG VM-1980-171-I-THEOR-EXP-PHYS
VAINBERG VM-1983-DOKL-AKAD-NAUK-SSSR+-V272-P335
VAINBERG VM-1986-JETP-LETT+-V44-P9
YAFFE LG-1983-PHYS-TODAY-V36-P50
Source item page count: 10
Publication Date: MAR
IDS No.: U1727
29-char source abbrev: THEOR MATH PHYS-ENGL TR



Record 89 of 100
Author(s): MUR VD; POZDNIAKOV SG; POPOV VS
Title: 1/N-EXPANSION AND WAVE-FUNCTION CALCULATION
Source: DOKLADY AKADEMII NAUK SSSR 1988, Vol 303, Iss 5, pp 1102-1107
No. cited references: 8
Cited references: 1986-YADERNAYA-FIZIKA-V44-P1103
EICHTEN E-1978-PHYS-REV-D-V17-P3090
ELETSKII VL-1979-DOKL-AKAD-NAUK-SSSR+-V249-P329
IMBO T-1985-PHYS-REV-D-V31-P2655
MUR VD-1987-JETP-LETT+-V45-P323
POPOV VS-1985-JETP-LETT+-V41-P439
VAINBERG VM-1986-JETP-LETT+-V44-P9
WITTEN E-1980-RECENT-DEV-GAUGE-THE
Source item page count: 6
IDS No.: T0476
29-char source abbrev: DOKL AKAD NAUK SSSR



Record 90 of 100
Author(s): MUR VD; POPOV VS
Title: SCALING FOR THE STARK-EFFECT IN THE RYDBERG ATOMS
Source: JETP LETTERS 1988, Vol 48, Iss 2, pp 70-74
No. cited references: 10
Addresses: MUR VD, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
Cited references: BEKENSTEIN JD-1969-PHYS-REV-V188-P130
FREEMAN RR-1979-PHYS-REV-A-V20-P2356
GLAB WL-1985-PHYS-REV-A-V31-P3677
KOLOSOV VV-1986-JETP-LETT+-V44-P588
LANDAU LD-1977-QUANTUM-MECHANICS
LUK TS-1981-PHYS-REV-LETT-V47-P83
NG K-1987-PHYS-REV-A-V35-P2508
RADTSIG AA-1986-PARAMETERS-ATOMS-ATO
SANDNER W-1981-PHYS-REV-A-V23-P2448
VAINBERG VM-1987-JETP-LETT+-V46-P225
Source item page count: 5
Publication Date: JUL 25
IDS No.: R6958
29-char source abbrev: JETP LETT-ENGL TR



Record 91 of 100
Author(s): BOGOMOLNYI EG
Title: OSCILLATION OF THE PHOTOABSORPTION NEAR THE IONIZATION THRESHOLD FOR HYDROGEN-LIKE ATOMS IN ELECTRIC AND MAGNETIC-FIELDS
Source: JETP LETTERS 1988, Vol 47, Iss 9, pp 526-529
No. cited references: 10
Addresses: BOGOMOLNYI EG, LD LANDAU THEORET PHYS INST, MOSCOW, USSR.
Cited references: BETHE H-1958-QUANTUM-MECHANICS-ON
BOGOMOLNY EB-1987-LANDAU-I-PREPRINT-P21
BOGOMOLNYI EB-1986-JETP-LETT+-V44-P561
GUTZWILLER MC-1971-J-MATH-PHYS-V12-P343
HOLLE A-1986-PHYS-REV-LETT-V56-P2594
MAIN J-1986-PHYS-REV-LETT-V57-P2789
NG K-1987-PHYS-REV-A-V35-P2508
ROTTKE H-1986-PHYS-REV-A-V33-P301
VAINBERG VM-1987-JETP-LETT+-V46-P225
WINTGEN D-1987-PHYS-REV-A-V36-P131
Source item page count: 4
Publication Date: MAY 10
IDS No.: R1245
29-char source abbrev: JETP LETT-ENGL TR



Record 92 of 100
Author(s): MUR VD; POPOV VS
Title: THE 1/N EXPANSION AND WAVE-FUNCTIONS
Source: SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR 1988, Vol 47, Iss 3, pp 444-449
No. cited references: 29
Addresses: MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
Cited references: BADALYAN AM-1987-NUCL-PHYS-B-V281-P85
BENDER CM-1982-PHYS-REV-A-V25-P1305
BURKE PG-1977-POTENTIAL-SCATTERING
DOLGOV AD-1979-ITEF72-I-THEOR-EXP-P
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DRUKAREV GF-1981-SOV-PHYS-JETP-V53-P271
EICHTEN E-1978-PHYS-REV-D-V17-P3090
GOLDBERGER ML-1964-COLLISION-THEORY
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1985-PHYS-REV-D-V31-P2655
IMBO T-1984-PHYS-REV-D-V29-P1669
KUDRJAVTSEV AE-1984-PHYS-LETT-B-V143-P41
KUDRYAVTSEV AE-1983-JETP-LETT+-V37-P489
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MUR VD-1985-ITEP84-I-THEOR-EXP-P
MUR VD-1983-SOV-J-NUCL-PHYS+-V37-P844
MUR VD-1976-THEOR-MATH-PHYS+-V27-P429
POPOV VS-1986-ITEP125-I-THEOR-EXP
POPOV VS-1985-JETP-LETT+-V41-P539
POPOV VS-1986-SOV-J-NUCL-PHYS+-V44-P714
POPOV VS-1985-SOV-PHYS-JETP-V61-P420
QUIGG C-1979-PHYS-REP-V56-P167
SHAPIRO IS-1978-PHYS-REP-V35-P129
SHAPIRO IS-1962-SOV-PHYS-JETP-V14-P1148
SHAPIRO IS-1963-THEORY-DIRECT-NUCLEA
SUKHATME U-1983-PHYS-REV-D-V28-P418
VAINBERG VM-1986-JETP-LETT+-V44-P9
WITTEN E-1980-RECENT-DEV-GAUGE-THE
Source item page count: 6
Publication Date: MAR
IDS No.: Q5571
29-char source abbrev: SOV J NUCL PHYS-ENGL TR



Record 93 of 100
Author(s): VRSCAY ER; HAMIDIAN H
Title: RAYLEIGH-SCHRODINGER PERTURBATION-THEORY AT LARGE ORDER FOR RADIAL RELATIVISTIC HAMILTONIANS USING HYPERVIRIAL AND HELLMANN-FEYNMAN THEOREMS
Source: PHYSICS LETTERS A 1988, Vol 130, Iss 3, pp 141-146
No. cited references: 34
Addresses: VRSCAY ER, UNIV WATERLOO, DEPT APPL MATH, WATERLOO N2L 3G1, ONTARIO, CANADA.
Cited references: 1982-INT-J-QUANTUM-CHEM-V21
AU CK-1980-PHYS-REV-A-V22-P1820
BAKER GA-1975-ESSENTIALS-PADE-APPR
CHAR BW-1985-MAPLE-USERS-GUIDE
CIZEK J-1977-INT-J-QUANTUM-CHEM-V12-P875
CRITCHFIELD CL-1976-J-MATH-PHYS-V17-P261
EPSTEIN JH-1962-AM-J-PHYS-V30-P266
EPSTEIN ST-1976-AM-J-PHYS-V44-P251
EPSTEIN ST-1961-PHYSICAL-REVIEW-V123-P1495
ERDELYI A-1956-ASYMPTOTIC-EXPANSION
FERNANDEZ FM-1987-LECTURE-NOTES-CHEM-V43
FEYNMAN RP-1939-PHYS-REV-V56-P340
FOCK V-1930-Z-PHYSIK-V61-P126
GOLDMAN T-1975-PHYS-REV-D-V12-P2910
GRANT M-1979-PHYS-REV-A-V20-P718
GREINER W-1985-QUANTUM-ELECTRODYNAM
HALL RL-1987-J-MATH-PHYS-V26-P457
HELLMANN H-1937-EINFUHRUNG-QUANTENCH
HENRICI P-1977-APPLIED-COMPUTATIONA-V2
HIRSCHFELDER JO-1970-J-CHEM-PHYS-V33-P1762
KILLINGBECK J-1978-PHYS-LETT-A-V65-P87
LAI CS-1982-J-PHYS-A-MATH-GEN-V15-PL155
MCENNAN J-1977-PHYS-REV-A-V16-P1768
MCKINLEY WA-1971-AM-J-PHYS-V39-P905
MOORE RA-1975-CAN-J-PHYS-V53-P1240
SCHIFF LI-1955-QUANTUM-MECHANICS
SERGEEV AV-1984-SOV-J-NUCL-PHYS+-V39-P731
SHERSTYUK AI-1972-SOV-PHYS-JETP-V35-P655
SIMON B-1970-ANN-PHYS-V58-P76
SOFF G-1973-Z-NATURFORSCH-A-VA 28-P1389
SWENSON RJ-1972-J-CHEM-PHYS-V57-P1734
VRSCAY ER-1985-J-MATH-PHYS-V27-P185
VRSCAY ER-1986-PHYS-REV-A-V33-P1433
VRSCAY ER-1985-PHYS-REV-A-V31-P2054
Source item page count: 6
Publication Date: JUL 4
IDS No.: P2323
29-char source abbrev: PHYS LETT A



Record 94 of 100
Author(s): PAPP E
Title: QUASICLASSICAL SYMMETRY PROPERTIES .2.
Source: PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 1988, Vol 161, Iss 4, pp 171-212
No. cited references: 141
Addresses: PAPP E, TECH UNIV CLAUSTHAL, INST THEORET PHYS, D-3392 CLAUSTHAL ZELLERFE, FED REP GER.
Cited references: ADAMOWSKI J-1985-PHYS-REV-A-V31-P43
ALHASSID Y-1985-PHYS-REV-LETT-V54-P1746
ARTECA GA-1984-J-MATH-PHYS-V25-P932
AU CK-1979-PHYS-REV-A-V20-P2245
BALSLEV E-1971-COMM-MATH-P-V22-P280
BARUT AO-1967-PHYS-REV-V156-P1541
BARUT AO-1971-PHYS-REV-D-V3-P1747
BARUT AO-1974-PHYS-REV-D-V10-P2709
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENJAMIN I-1986-PHYS-REV-A-V33-P2833
BJORKEN JD-1964-RELATIVISTIC-QUANTUM
BOHM D-1987-PHYS-REP-V144-P321
BOHM D-1952-PHYS-REV-V85-P166
BOHM D-1952-PHYS-REV-V85-P180
BOHM D-1954-PHYSICAL-REVIEW-V96-P208
BOPP F-1965-ANN-PHYSIK-V17-P407
BOSE SK-1985-J-PHYS-A-MATH-GEN-V18-P1289
BRANDAS E-1977-PHYS-REV-A-V16-P2207
BUSIELLO G-1986-J-PHYS-A-MATH-GEN-V19-PL881
CEROFOLINI GF-1980-NUOVO-CIMENTO-B-V58-P286
CHATTERJEE A-1986-J-MATH-PHYS-V27-P2331
CHATTERJEE A-1986-J-PHYS-A-V18-P3707
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P1193
CHATTERJEE A-1987-PHYS-REV-A-V35-P2722
CHATTERJEE A-1986-PHYS-REV-A-V34-P2470
CRITCHFIELD CL-1976-J-MATH-PHYS-V17-P261
DEBROGLIE L-1927-COMPT-REND-V185-P380
DEBROGLIE L-1927-COMPT-REND-V184-P273
DEBROGLIE L-1926-COMPT-REND-V183-P447
DELAPENAAUERBACL-1969-J-MATH-PHYS-V10-P1620
DOGLOV AD-1978-PHYS-LETT-B-V79-P403
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOOLEN GD-1975-J-PHYS-B-AT-MOL-OPT-V8-P525
DOREN DJ-1986-PHYS-REV-A-V34-P2654
DUMONTLEPAGE MC-1980-J-PHYS-A-MATH-GEN-V13-P1243
DUTT R-1987-J-PHYS-B-AT-MOL-OPT-V20-P2437
DUTT R-1986-PHYS-REV-A-V34-P777
EHRENFEST P-1920-ANN-PHYS-LEIPZIG-V61-P440
EISENHART LP-1948-PHYS-REV-V74-P87
ELETSKY VL-1981-PHYS-LETT-A-V84-P235
ESEBBAG C-1985-J-PHYS-A-MATH-GEN-V18-P3505
FELDMAN G-1979-NUCL-PHYS-B-V154-P441
FENYES I-1952-Z-PHYS-V132-P81
FERNANDEZ FM-1987-PHYS-REV-A-V35-P4861
FERNANDEZ FM-1983-PHYS-REV-A-V27-P663
FERNANDEZ FM-1983-PHYS-REV-A-V27-P2735
FEYNMAN RP-1939-PHYS-REV-V56-P340
FOCK V-1930-Z-PHYSIK-V63-P855
FRYE D-1986-PHYS-REV-A-V34-P1682
GERRY CC-1986-J-PHYS-A-MATH-GEN-V19-P3797
GRANT M-1979-PHYS-REV-A-V20-P718
GREEN AES-1986-PHYS-REV-A-V33-P2087
HALL RL-1985-PHYS-REV-A-V32-P14
HALLIDAY IG-1980-PHYS-REV-D-V21-P1529
HELLMANN H-1935-ACTA-FIZICOCHIM-USSR-V1-P913
HELLMANN H-1936-ACTA-PHYSICOCHIM-URS-V4-P225
HELLMANN H-1935-J-CHEM-PHYSICS-V3-P61
HO YK-1983-PHYS-REP-V99-P1
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1984-PHYS-REV-D-V29-P1669
JACOBS S-1986-PHYS-REV-D-V33-P3338
JUNKER BR-1983-PHYS-REV-A-V27-P2785
JUNKER BR-1978-PHYS-REV-A-V18-P313
JUNKER BR-1978-PHYS-REV-A-V18-P2437
KAZAMA Y-1977-PHYS-REV-D-V15-P2287
KAZAMA Y-1977-PHYS-REV-D-V15-P2300
KERSHAW D-1964-PHYSICAL-REVIEW-B-V136-P1850
KIBLER M-1987-J-PHYS-A-MATH-GEN-V20-P4097
KIBLER M-1984-PHYS-REV-A-V29-P2891
KILLINGBECK J-1979-REP-PROG-PHYS-V40-P963
KLAUDER JR-1987-ANN-PHYS-NEW-YORK-V180-P108
KOSTIN MD-1975-J-STAT-PHYS-V12-P145
KUSTAANHEIMO P-1965-J-REINE-ANGEWANDTE-M-V218-P204
LAI CH-1987-J-MATH-PHYS-V28-P1801
LANDAU LD-1959-QUANTUM-MECHANICS
LISSIA M-1986-NUOVO-CIMENTO-A-V92-P217
LITTLEJOHN RG-1987-PHYS-REV-A-V36-P2953
MADELUNG E-1926-Z-PHYS-V40-P322
MAKI JN-1986-PHYS-REV-LETT-V57-P2097
MALKIN IA-1965-JETP-LETT-V2-P146
MALKUS WVR-1951-PHYSICAL-REVIEW-V83-P899
MALUENDES SA-1987-PHYS-LETT-A-V124-P215
MARRIWALLA KH-1975-PHYS-REP-V20-P287
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORENO G-1984-J-PHYS-B-AT-MOL-OPT-V17-P21
MUR VD-1987-JETP-LETT-V45-P411
MYUNG HC-1982-HADRONIC-J-V5-P1277
MYUNG HC-1982-HADRONIC-J-V5-P1367
NASSAR AB-1986-PHYS-REV-A-V33-P2134
NASSAR AB-1986-PHYS-REV-A-V33-P3502
NELSON E-1966-PHYSICAL-REVIEW-V150-P1079
NIETO MM-1979-AM-J-PHYS-V47-P1067
NISHIOKA M-1983-NUOVO-CIMENTO-B-V77-P19
ORLAND H-1979-PHYS-REV-LETT-V42-P285
OSLAND P-1984-NUCL-PHYS-B-V247-P421
OSLAND P-1984-NUCL-PHYS-B-V247-P450
PAPP E-1986-PHYS-LETT-A-V118-P167
PAPP E-1986-PHYS-REP-V136-P103
PAPP E-1988-PHYS-REV-A-V37
PAPP E-1987-PHYS-REV-A-V36-P3550
PAPP E-1987-PHYS-REV-A-V35-P4946
PAPP E-1986-PHYS-REV-A-V34-P47
PAPP E-1986-PHYS-REV-A-V34-P4405
PAPP E-1986-PHYS-REV-A-V33-P719
POPOV VS-1986-YAD-FIZ-V44-P1103
PRUGOVECKI E-1984-STOCHASTIC-QUANTUM-M
QUESNE C-1986-J-PHYS-A-MATH-GEN-V19-P2689
QUIGG C-1979-PHYS-REP-V56-P167
REBANE TK-1983-TEORETICHESKAYA-MATE-V56-P432
ROBICHEAUX F-1987-PHYS-REV-A-V35-P3619
ROGERS FJ-1970-PHYS-REV-A-V1-P1577
ROSEN G-1987-J-MATH-PHYS-V28-P975
ROSEN G-1986-PHYS-REV-A-V34-P1556
ROSEN G-1979-PHYS-REV-A-V20-P1287
ROSENAU P-1986-PHYS-LETT-A-V114-P355
ROWLEY N-1979-J-PHYS-A-MATH-GEN-V12-PL7
ROY B-1987-J-PHYS-A-MATH-GEN-V20-P3051
ROYCHOUDHURY RK-1987-J-PHYS-A-MATH-GEN-V20-PL1083
SANTILLI RM-1983-LETT-NUOVO-CIMENTO-V38-P509
SCHRODINGER E-1941-P-ROY-IRISH-ACAD-A-V46-P183
SCHWINGER J-1976-ANN-PHYS-NEW-YORK-V101-P451
SEVER R-1987-PHYS-REV-A-V36-P1045
SEVER R-1987-PHYS-REV-A-V35-P2725
SILVERMAN JN-1970-CHEM-PHYS-LETT-V7-P37
SILVERMAN JN-1970-CHEM-PHYS-LETT-V7-P640
SOFF G-1973-Z-NATURFORSCH-A-VA 28-P1389
SOMMERFELD A-1949-PARTIAL-DIFFERENTIAL
SUKHATME U-1983-PHYS-REV-D-V28-P418
TANG AZ-1987-PHYS-REV-A-V35-P911
TANGHERLINE FR-1963-NUOVO-CIMENTO-V27-P636
TURBINER AV-1980-SOV-PHYS-JETP-V52-P868
VAINBERG VM-1986-JETP-LETT+-V44-P9
VANDERMERWE PD-1986-PHYS-REV-D-V33-P3383
VARSHNI YP-1987-PHYS-REV-A-V36-P3009
VICHARELLI PA-1987-PHYS-REV-A-V35-P1477
WANG YY-1987-J-PHYS-PARIS-V48-P2067
WEIZEL W-1953-Z-PHYS-V134-P264
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
YARIS R-1978-J-PHYS-B-AT-MOL-OPT-V11-P1475
YASUE K-1978-ANN-PHYS-NEW-YORK-V114-P479
Source item page count: 42
Publication Date: APR
IDS No.: N1086
29-char source abbrev: PHYS REP-REV SECT PHYS LETT



Record 95 of 100
Author(s): VAINBERG VM; MUR VD; POPOV VS; SERGEEV AV
Title: STARK-EFFECT FOR THE RYDBERG STATES OF THE HYDROGEN-ATOM
Source: JETP LETTERS 1987, Vol 46, Iss 5, pp 225-230
No. cited references: 12
Addresses: VAINBERG VM, MOSCOW ENGN PHYS INST, INST THEORET & EXPTL PHYS, MOSCOW, USSR.
Cited references: BEKENSTEIN JD-1969-PHYS-REV-V188-P130
GLAB WL-1985-PHYS-REV-A-V31-P530
GLAB WL-1985-PHYS-REV-A-V31-P3677
KOCH PM-1981-PHYS-REV-LETT-V46-P1275
KOLOSOV VV-1986-JETP-LETT+-V44-P588
KONDRATOVICH VD-1984-J-PHYS-B-AT-MOL-OPT-V17-P2011
POPOV VS-1986-ITEP125-PREPR
POPOV VS-1985-JETP-LETT+-V41-P539
POPOV VS-1986-SOV-J-NUCL-PHYS+-V44-P714
ROTTKE H-1986-PHYS-REV-A-V33-P301
VAINBERG VM-1986-JETP-LETT+-V44-P9
VAINBERG VM-1987-ZH-EKSP-TEOR-FIZ-V93-P450
Source item page count: 6
Publication Date: SEP 10
IDS No.: L9987
29-char source abbrev: JETP LETT-ENGL TR



Record 96 of 100
Author(s): MUR VD; POPOV VS
Title: 1/N EXPANSION AND WAVE-FUNCTIONS
Source: JETP LETTERS 1987, Vol 45, Iss 7, pp 410-413
No. cited references: 15
Addresses: MUR VD, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW, USSR.
Cited references: BADALYAN AM-1987-NUCL-PHYS-B-V281-P85
BENDER CM-1982-PHYS-REV-A-V25-P1305
BURKE PG-1977-POTENTIAL-SCATTERING
DOLGOV AD-1979-ITEF72-I-THEOR-EXP-P
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
EICHTEN E-1978-PHYS-REV-D-V17-P3090
IMBO T-1984-PHYS-LETT-A-V105-P183
IMBO T-1985-PHYS-REV-D-V31-P2655
MUR VD-1983-SOV-J-NUCL-PHYS+-V37-P844
MUR VD-1976-TEOR-MAT-FIZ-V27-P204
POPOV VS-1985-JETP-LETT+-V41-P539
SHAPIRO IS-1978-PHYS-REP-V35-P129
SUKHATME U-1983-PHYS-REV-D-V28-P418
VAINBERG VM-1986-JETP-LETT+-V44-P9
WITTEN E-1980-RECENT-DEV-GAUGE-THE
Source item page count: 4
Publication Date: APR 10
IDS No.: J7197
29-char source abbrev: JETP LETT-ENGL TR



Record 97 of 100
Author(s): DOREN DJ; HERSCHBACH DR
Title: SPATIAL DIMENSION AS AN EXPANSION PARAMETER IN QUANTUM-MECHANICS
Source: PHYSICAL REVIEW A 1986, Vol 34, Iss 4, pp 2654-2664
No. cited references: 40
Addresses: DOREN DJ, HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138.
Cited references: ABRAMOWITZ M-1964-APPLIED-MATH-SERIES-V55
AMIT DJ-1978-FIELD-THEORY-RENORMA
BALIAN R-1974-ANN-PHYS-NEW-YORK-V83-P28
BALIAN R-1973-PHYS-REV-LETT-V30-P544
BENDER CM-1982-PHYS-REV-A-V25-P1305
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
CHATTERJEE A-1985-J-PHYS-A-MATH-GEN-V18-P1193
DOLGOV AD-1979-ITEF72-I-THEOR-EXP-P
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DOMB C-1976-PHASE-TRANSITIONS-CR-V6
DOREN DJ-1985-CHEM-PHYS-LETT-V118-P115
DOREN DJ-1986-PHYS-REV-A-V34-P2665
DOREN DJ-UNPUB-J-CHEM-PHYS
EICHTEN E-1978-PHYS-REV-D-V17-P3090
ELETSKY VL-1980-PHYS-LETT-B-V94-P65
FERRELL RA-1974-PHYS-REV-A-V9-P846
FISHER ME-1973-PHYS-REV-LETT-V30-P679
GAZEAU JP-1979-PHYS-REV-A-V20-P727
GELFAND IM-1964-GENERALIZED-FUNCTION-V1
HERRICK DR-1975-PHYS-REV-A-V11-P42
HERSCHBACH DR-1986-J-CHEM-PHYS-V84-P838
HIKAMI S-1979-J-PHYS-A-MATH-GEN-V12-P759
HILL RN-1985-J-CHEM-PHYS-V83-P1173
KNOPS HJF-1973-PHYS-LETT-A-VA 45-P217
KOUDINOV AV-1982-CZECH-J-PHYS-V32-P556
MLODINOW LD-1981-ANN-PHYS-NEW-YORK-V131-P1
MLODINOW LD-1980-ANN-PHYS-NEW-YORK-V128-P314
MLODINOW LD-1984-J-MATH-PHYS-V25-P943
MORENO G-1984-J-PHYS-B-AT-MOL-OPT-V17-P21
PRIVMAN V-1981-PHYS-LETT-A-V81-P326
ROGERS FJ-1970-PHYS-REV-A-V1-P1577
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
SINHAROY M-1984-J-PHYS-A-MATH-GEN-V17-PL687
VANDERMERWE PI-1983-LETT-NUOVO-CIMENTO-V37-P86
VRSCAY ER-1986-PHYS-REV-A-V33-P1433
WITTEN E-1980-PHYS-TODAY-V33-P38
YAFFE LG-1983-PHYS-TODAY-V36-P50
YAFFE LG-1982-REV-MOD-PHYS-V54-P407
ZINNJUSTIN J-1981-J-MATH-PHYS-V22-P511
Source item page count: 11
Publication Date: OCT
IDS No.: E2344
29-char source abbrev: PHYS REV A



Record 98 of 100
Author(s): POPOV VS; WEINBERG VM
Title: ON SUMMATION OF PERTURBATION-SERIES FOR SCREENED COULOMB POTENTIALS
Source: PHYSICS LETTERS A 1985, Vol 107, Iss 8, pp 371-375
No. cited references: 35
Addresses: POPOV VS, MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, USSR.
Cited references: ALLILUEV SP-1982-DOKL-AKAD-NAUK-SSSR+-V265-P597
ALLILUEV SP-1979-PHYS-LETT-A-V73-P103
AU CK-1979-PHYS-REV-A-V20-P2245
AU CK-1979-PHYS-REV-LETT-V42-P1582
BENDER CM-1973-PHYS-REV-D-V7-P1620
BENDER CM-1969-PHYSICAL-REVIEW-V184-P1231
BOGOMOLNY E-1980-SOVIET-SCI-REV-A-V2-P247
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DOLGOV AD-1980-ZH-EKSP-TEOR-FIZ+-V79-P1704
DOLGOV AD-1978-ZH-EKSP-TEOR-FIZ+-V75-P2010
DYSON FJ-1952-PHYS-REV-V85-P631
EICHTEN E-1978-PHYS-REV-D-V17-P3090
ELETSKY VL-1983-ITEP179-PREPR
ELETSKY VL-1981-PHYS-LETT-A-V84-P235
ELETSKY VL-1982-SOV-PHYS-JETP-V54-P833
GRAFFI S-1971-NUOVO-CIMENTO-B-V4-P313
KESARWANI RN-1978-J-MATH-PHYS-V19-P819
LAI CS-1982-PHYS-REV-A-V26-P2245
LAI CS-1981-PHYS-REV-A-V23-P455
LIPATOV LN-1977-SOV-PHYS-JETP-V45-P216
LIPATOV LN-1976-SOVIET-PHYSICS-JETP-V44-P1055
ORLOV YV-1984-ZH-EKSP-TEOR-FIZ-V86-P1598
POPOV VS-1983-DOKL-AKAD-NAUK-SSSR+-V272-P335
POPOV VS-1982-ITEP101-PREPR
POPOV VS-1984-ITEP119-PREPR
PRIVMAN V-1981-PHYS-LETT-A-V81-P326
ROGERS FJ-1970-PHYS-REV-A-V1-P1577
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
SILVERSTONE HJ-1978-PHYS-REV-A-V18-P1853
TURBINER AV-1980-ZH-EKSP-TEOR-FIZ+-V79-P1719
WEINBERG VM-1982-ITEP160-PREPR
WEINBERG VM-1980-ITEP171-PREPR
WEINBERG VM-1984-ITEP35-PREPR
ZINNJUSTIN J-1981-PHYS-REP-V70-P109
Source item page count: 5
IDS No.: ADX46
29-char source abbrev: PHYS LETT A



Record 99 of 100
Author(s): VAINBERG VM; POPOV VS
Title: SUMMATION OF SERIES OF THE PERTURBATION-THEORY FOR YUKAWA POTENTIAL
Source: DOKLADY AKADEMII NAUK SSSR 1983, Vol 272, Iss 2, pp 335-340
No. cited references: 16
Cited references: ALLILUEV SP-1983-DAN-SSSR-V271
ALLILUEV SP-1982-DOKL-AKAD-NAUK-SSSR+-V265-P597
BAKER GA-1975-ESSENTIALS-PADE-APPR
BOGOMOLNY E-1980-SOVIET-SCI-REV-A-V2-P247
ELETSKY VL-1981-PHYS-LETT-A-V84-P235
ELETSKY VL-1981-ZHETF-V81-P1567
KESARWANI RN-1978-J-MATH-PHYS-V19-P819
POPOV VS-1982-ITEP101-PREPR
POPOV VS-1982-PHYS-LETT-A-V90-P107
PRIVMAN V-1981-PHYS-LETT-A-V81-P326
ROGERS FJ-1970-PHYS-REV-A-V1-P1577
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
TRUBNIKOV BA-1965-ZHETF-V48-P1618
VAINBERG VM-1980-ITEF171-PREPR
WEINBERG VM-1982-ITEP160-PREPR
ZINNJUSTIN J-1981-PHYS-REP-V70-P109
Source item page count: 6
IDS No.: RT573
29-char source abbrev: DOKL AKAD NAUK SSSR



Record 100 of 100
Author(s): ALLILUEV SP; POPOV VS
Title: LOGARITHMIC PERTURBATION-THEORY FOR THE SCREENED COULOMB POTENTIAL
Source: DOKLADY AKADEMII NAUK SSSR 1983, Vol 271, Iss 6, pp 1345-1348
No. cited references: 15
Addresses: ALLILUEV SP, MOSCOW ENGN PHYS INST, MOSCOW, USSR.
Cited references: ALLILUEV SP-1982-DOKL-AKAD-NAUK-SSSR+-V265-P597
DOLGOV AD-1979-PHYS-LETT-B-V86-P185
DOLGOV AD-1978-PHYS-LETT-B-V79-P403
DOLGOV AD-1978-ZH-EKSP-TEOR-FIZ+-V75-P2010
ELETSKY VL-1981-PHYS-LETT-A-V84-P235
ELETSKY VL-1981-ZHETF-V81-P1567
GRANT M-1979-PHYS-REV-A-V20-P718
IAFRATE GJ-1969-PHYS-REV-V182-P244
LAI CS-1980-PHYS-REV-A-V21-P1100
LANDAU LD-1963-KVANTOVAYA-MEKHANIKA
POLIKANOV VS-1967-ZHETF-V52-P1326
PRIVMAN V-1981-PHYS-LETT-A-V81-P326
SERGEEV AV-1982-ZH-EKSP-TEOR-FIZ+-V82-P1070
TURBINER AV-1982-9YA-SHKOL-FIZ-ITEF-E-P39
VAINBERG VM-1980-ITEF171-PREPR
Source item page count: 4
IDS No.: RL647
29-char source abbrev: DOKL AKAD NAUK SSSR