Web Release Date: June 4,
Surface Jumping: Franck-Condon Factors and Condon Points in Phase Space
and
Department of Chemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel, and Departments of Chemistry and Physics, Harvard University, Cambridge, Massachusetts 02138
Received: November 29, 2001
In Final Form: March 27, 2002
Abstract:
We generalize the concept of Tully-Preston surface hopping to include larger jumps in the case that the
surfaces do not cross. Instead of identifying a complex hopping point, we specify a jump between two locales
in phase space. This concept is used here to find propensity rules for the accepting vibrational mode(s) in a
radiationless vibronic relaxation transition. A model inspired by the S2 S0 vibronic relaxation transition of
the benzene molecule in which 30 modes of vibration compete for the electronic energy is studied within this
approach. For this model, we show that almost all of the energy must go to a single C-H local stretching.
The initial conditions for vibrations of this mode are a coordinate jump of the hydrogen atom toward the
ring. All of the other modes undergo an almost vertical transition, in which the energy that they take is
determined by their equilibrium displacement between the two surfaces. We observe that for a large energy
gap the masses and frequencies become the defining parameters for choosing the accepting mode.
Anharmonicities are very important when a competition between degenerate modes occurs. These conclusions
are demonstrated by the specific model considered here but apply in general to any weak internal conversion
process.