Self-consistent-field perturbation theory of molecular vibrations

Alexei V. Sergeev and David Z. Goodson

Perturbation theory is used to perform noniterative calculations of energy eigenvalues of the coupled ordinary differential equations that result from imposing separability assumptions in terms of normal coordinates on vibrational wavefunctions. Various model Hamiltonians with 2 or 3 coupled normal modes are studied and the increase of computational cost with the number of degrees of freedom is analyzed. Quadratic Pade approximants of the perturbation expansions are rapidly convergent, and directly yield complex numbers for resonance eigenvalues. For a 3-mode system, results are obtained within partial separability assumptions, with a pair of modes left coupled. Large-order perturbation theory with partial separability is suggested as an alternative to low-order exact perturbation theory.

Full text, pdf-format

Figures: 1 2 3 4 5 (with captions, GIF format)
1 2 3 4 5 (pdf-format)

Paper from the journal

LaTex file

Terse list of papers | Verbose list of papers | Recent papers | Unpublished reports | Conference presentations
List of papers with abstracts from INSPEC database | List of recent papers automatically generated by OCLC Service
List of papers automatically generated by ISI | Articles which cite A. S. works | Random sentences generated from abstracts of A. S. papers

Files necessary for job applications | Directory of files | Designed by A. Sergeev