Singularities of Møller-Plesset series: example "bh aug-cc-pVQZ 1.5r_e"

Molecule X 1^Sigma+ State of BH. Basis AUG-CC-PVQZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.2439
0.00883
Singularities of quadratic [5, 5, 4] approximant
2
1.2635
0.0092 i
3
1.4154 + 0.4464 i
0.0119 - 0.0699 i
4
1.4154 - 0.4464 i
0.0119 + 0.0699 i
5
-2.3417
0.017
6
-2.5006
0.0186 i
7
2.9629
1.34
8
-3.91
1.16
9
9.7441
0.321 i
10
-9.9547
0.133 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.2231
0.00789
Singularities of quadratic [5, 5, 5] approximant
2
1.2424
0.0082 i
3
1.4111 + 0.445 i
0.00902 - 0.0664 i
4
1.4111 - 0.445 i
0.00902 + 0.0664 i
5
-2.2632
0.0141
6
-2.3811
0.0151 i
7
3.0442
1.62
8
-3.7605
3.14
9
8.631
0.343 i
10
-11.2299
0.141 i
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.375
0.0233
Singularities of quadratic [6, 5, 5] approximant
2
1.4221
0.0267 i
3
1.4251 + 0.459 i
0.0321 - 0.08 i
4
1.4251 - 0.459 i
0.0321 + 0.08 i
5
-2.1137
0.0178
6
-2.1542
0.0184 i
7
3.2504
1.73
8
-3.346
0.638
9
5.7403
1.16 i
10
-8.3498
0.227 i
11
77.0705
48.2
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4997 + 0.5201 i
0.228 + 0.0433 i
Singularities of quadratic [6, 6, 5] approximant
2
1.4997 - 0.5201 i
0.228 - 0.0433 i
3
1.6162 + 0.3759 i
0.599 + 0.529 i
4
1.6162 - 0.3759 i
0.599 - 0.529 i
5
1.7755 + 0.6003 i
0.355 - 0.207 i
6
1.7755 - 0.6003 i
0.355 + 0.207 i
7
-2.2035
0.017
8
-2.2751
0.0177 i
9
2.6023
1.18
10
-3.5503
9.9
11
-9.4054
0.151 i
12
12.9438
0.292 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4553 + 0.4648 i
0.0706 - 0.145 i
Singularities of quadratic [6, 6, 6] approximant
2
1.4553 - 0.4648 i
0.0706 + 0.145 i
3
1.6343
0.12
4
1.79
0.235 i
5
-2.2388
0.138
6
-2.2572
0.145 i
7
2.5819 + 1.2124 i
0.272 + 0.221 i
8
2.5819 - 1.2124 i
0.272 - 0.221 i
9
-3.3762
0.4
10
3.9932
0.375
11
-6.0539
0.303 i
12
-39.2805
8.06
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4501 + 0.4876 i
0.0945 - 0.0678 i
Singularities of quadratic [7, 6, 6] approximant
2
1.4501 - 0.4876 i
0.0945 + 0.0678 i
3
1.592 + 0.0578 i
0.0639 - 0.0396 i
4
1.592 - 0.0578 i
0.0639 + 0.0396 i
5
-2.2336
0.012
6
-2.3514
0.0128 i
7
2.3799 + 0.5612 i
0.394 - 0.794 i
8
2.3799 - 0.5612 i
0.394 + 0.794 i
9
3.6406
1.66
10
-3.9315
0.672
11
-6.5589 + 14.3927 i
0.00828 + 0.111 i
12
-6.5589 - 14.3927 i
0.00828 - 0.111 i
13
35.7689
0.257 i
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4561 + 0.4832 i
0.108 - 0.088 i
Singularities of quadratic [7, 7, 6] approximant
2
1.4561 - 0.4832 i
0.108 + 0.088 i
3
1.6533 + 0.0627 i
0.0849 - 0.0508 i
4
1.6533 - 0.0627 i
0.0849 + 0.0508 i
5
-2.2404
0.0129
6
-2.3574
0.0135 i
7
2.3797 + 0.659 i
0.682 - 0.658 i
8
2.3797 - 0.659 i
0.682 + 0.658 i
9
3.0317
8.21
10
-4.1397
0.284
11
-6.5999
0.1 i
12
-6.653 + 3.9815 i
0.0537 - 0.115 i
13
-6.653 - 3.9815 i
0.0537 + 0.115 i
14
18.6218
0.281 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4724 + 0.4663 i
0.0883 - 0.229 i
Singularities of quadratic [7, 7, 7] approximant
2
1.4724 - 0.4663 i
0.0883 + 0.229 i
3
1.743 + 0.451 i
0.383 + 0.161 i
4
1.743 - 0.451 i
0.383 - 0.161 i
5
1.8553 + 0.405 i
1.66 + 2.92 i
6
1.8553 - 0.405 i
1.66 - 2.92 i
7
-1.9664 + 0.0005 i
0.000115 + 0.000116 i
8
-1.9664 - 0.0005 i
0.000115 - 0.000116 i
9
-2.1643
0.00185
10
-2.4772
0.00541 i
11
2.6444
0.662
12
-4.3602
0.18
13
6.0205
0.794 i
14
-49.3615
0.242 i
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.472 + 0.4663 i
0.0872 - 0.226 i
Singularities of quadratic [8, 7, 7] approximant
2
1.472 - 0.4663 i
0.0872 + 0.226 i
3
1.747 + 0.4501 i
0.385 + 0.163 i
4
1.747 - 0.4501 i
0.385 - 0.163 i
5
-1.8465 + 0.0012 i
0.000228 + 0.000229 i
6
-1.8465 - 0.0012 i
0.000228 - 0.000229 i
7
1.853 + 0.405 i
1.31 + 2.65 i
8
1.853 - 0.405 i
1.31 - 2.65 i
9
-2.1829
0.00283
10
-2.4557
0.0057 i
11
2.6557
0.681
12
-4.3278
0.188
13
6.1037
0.729 i
14
-59.6495 + 47.5906 i
0.122 - 0.271 i
15
-59.6495 - 47.5906 i
0.122 + 0.271 i
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.469 + 0.4726 i
0.129 - 0.174 i
Singularities of quadratic [8, 8, 7] approximant
2
1.469 - 0.4726 i
0.129 + 0.174 i
3
1.8393 + 0.3719 i
0.37 - 0.0407 i
4
1.8393 - 0.3719 i
0.37 + 0.0407 i
5
1.9142
0.283
6
2.1731 + 0.5252 i
1.02 + 0.387 i
7
2.1731 - 0.5252 i
1.02 - 0.387 i
8
-2.25
0.024
9
-2.3237
0.0244 i
10
-3.6986
107.
11
-3.7819 + 6.1254 i
0.107 - 0.00652 i
12
-3.7819 - 6.1254 i
0.107 + 0.00652 i
13
7.3048
0.695 i
14
-8.9569
0.0908 i
15
-3.1201 + 8.986 i
0.048 - 0.137 i
16
-3.1201 - 8.986 i
0.048 + 0.137 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4684 + 0.4731 i
0.129 - 0.168 i
Singularities of quadratic [8, 8, 8] approximant
2
1.4684 - 0.4731 i
0.129 + 0.168 i
3
1.8629
0.251
4
1.8644 + 0.3578 i
0.368 - 0.0753 i
5
1.8644 - 0.3578 i
0.368 + 0.0753 i
6
2.1713 + 0.6003 i
1.03 - 0.0355 i
7
2.1713 - 0.6003 i
1.03 + 0.0355 i
8
-2.2621
0.0515
9
-2.3054
0.0539 i
10
-3.5016
0.699
11
-4.7402
1.09 i
12
-7.3094
0.405
13
7.384 + 4.6253 i
0.0673 - 0.618 i
14
7.384 - 4.6253 i
0.0673 + 0.618 i
15
9.5325
7.1 i
16
120.8335
0.255
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4683 + 0.4726 i
0.126 - 0.17 i
Singularities of quadratic [9, 8, 8] approximant
2
1.4683 - 0.4726 i
0.126 + 0.17 i
3
1.8892
0.264
4
1.8614 + 0.3633 i
0.375 - 0.0682 i
5
1.8614 - 0.3633 i
0.375 + 0.0682 i
6
2.1708 + 0.5691 i
1.15 + 0.179 i
7
2.1708 - 0.5691 i
1.15 - 0.179 i
8
-2.268
0.0874
9
-2.2983
0.0917 i
10
-3.49
0.589
11
-4.7659
0.892 i
12
6.4422 + 3.7795 i
0.441 + 0.426 i
13
6.4422 - 3.7795 i
0.441 - 0.426 i
14
-7.9363
0.69
15
8.4662 + 8.0996 i
0.152 - 1.39 i
16
8.4662 - 8.0996 i
0.152 + 1.39 i
17
-18.8046
0.525 i
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.1506
0
Singularities of quadratic [9, 9, 8] approximant
2
-0.1506
0
3
1.4674 + 0.4695 i
0.0947 - 0.182 i
4
1.4674 - 0.4695 i
0.0947 + 0.182 i
5
1.8419 + 0.3975 i
0.421 + 0.00892 i
6
1.8419 - 0.3975 i
0.421 - 0.00892 i
7
1.9621 + 0.4126 i
1.88 + 1.07 i
8
1.9621 - 0.4126 i
1.88 - 1.07 i
9
-2.2343
0.0124
10
-2.348
0.0134 i
11
2.3803
0.534
12
-3.7917
2.49
13
-3.6668 + 6.5993 i
0.415 + 0.18 i
14
-3.6668 - 6.5993 i
0.415 - 0.18 i
15
-3.0194 + 7.352 i
0.276 - 0.107 i
16
-3.0194 - 7.352 i
0.276 + 0.107 i
17
-8.6712
0.129 i
18
8.7821
0.356 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7534 + 0.e-5 i
2.68e-7 + 2.68e-7 i
Singularities of quadratic [9, 9, 9] approximant
2
-0.7534 - 0.e-5 i
2.68e-7 - 2.68e-7 i
3
1.4648 + 0.4648 i
0.0461 - 0.177 i
4
1.4648 - 0.4648 i
0.0461 + 0.177 i
5
1.7899 + 0.3951 i
0.851 + 0.311 i
6
1.7899 - 0.3951 i
0.851 - 0.311 i
7
1.8078 + 0.515 i
0.358 + 0.55 i
8
1.8078 - 0.515 i
0.358 - 0.55 i
9
-2.1967
0.00429
10
-2.4287
0.00585 i
11
-1.2076 + 2.3206 i
0.00183 - 0.000889 i
12
-1.2076 - 2.3206 i
0.00183 + 0.000889 i
13
-1.2034 + 2.3255 i
0.000903 + 0.00183 i
14
-1.2034 - 2.3255 i
0.000903 - 0.00183 i
15
2.833
1.28
16
-4.3409
0.183
17
7.6273
0.361 i
18
-21.5195
0.209 i
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2072
0
Singularities of quadratic [10, 9, 9] approximant
2
-0.2072
0
3
1.4644 + 0.4669 i
0.0608 - 0.167 i
4
1.4644 - 0.4669 i
0.0608 + 0.167 i
5
1.8048 + 0.4155 i
0.613 + 0.161 i
6
1.8048 - 0.4155 i
0.613 - 0.161 i
7
1.8635 + 0.5003 i
1.54 + 1.25 i
8
1.8635 - 0.5003 i
1.54 - 1.25 i
9
-1.4924 + 1.484 i
0.0000353 - 0.000317 i
10
-1.4924 - 1.484 i
0.0000353 + 0.000317 i
11
-1.4949 + 1.4827 i
0.000316 + 0.0000362 i
12
-1.4949 - 1.4827 i
0.000316 - 0.0000362 i
13
-2.1692
0.00247
14
-2.5186
0.00419 i
15
2.536
0.71
16
-5.3991
0.141
17
5.6667
2.71 i
18
-8.9653
2.99 i
19
20.0489
0.816
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.4053
1.02e-8
Singularities of quadratic [10, 10, 9] approximant
2
0.4053
1.02e-8 i
3
1.4596 + 0.4684 i
0.0535 - 0.125 i
4
1.4596 - 0.4684 i
0.0535 + 0.125 i
5
1.7479 + 0.4635 i
0.706 - 0.164 i
6
1.7479 - 0.4635 i
0.706 + 0.164 i
7
1.8708 + 0.5989 i
0.769 + 0.119 i
8
1.8708 - 0.5989 i
0.769 - 0.119 i
9
-2.1859
0.00344
10
2.1934
0.632
11
-1.0242 + 2.0646 i
0.0000151 + 0.000493 i
12
-1.0242 - 2.0646 i
0.0000151 - 0.000493 i
13
-1.0281 + 2.0627 i
0.000493 - 0.0000136 i
14
-1.0281 - 2.0627 i
0.000493 + 0.0000136 i
15
-2.4623
0.00487 i
16
3.2
0.596 i
17
-4.9003
0.13
18
6.0357
0.247
19
-8.4573
1.9 i
20
96.1554
0.908 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.0635
0
Singularities of quadratic [10, 10, 10] approximant
2
-0.0635
0
3
0.6808 + 0.e-5 i
1.27e-6 - 1.27e-6 i
4
0.6808 - 0.e-5 i
1.27e-6 + 1.27e-6 i
5
1.464 + 0.4607 i
0.00867 - 0.18 i
6
1.464 - 0.4607 i
0.00867 + 0.18 i
7
1.7599 + 0.3823 i
1.13 + 0.422 i
8
1.7599 - 0.3823 i
1.13 - 0.422 i
9
1.7751 + 0.5394 i
0.126 + 0.377 i
10
1.7751 - 0.5394 i
0.126 - 0.377 i
11
-2.1871
0.0035
12
-1.0536 + 2.0087 i
0.000503 - 0.000195 i
13
-1.0536 - 2.0087 i
0.000503 + 0.000195 i
14
-1.0518 + 2.0114 i
0.000197 + 0.000504 i
15
-1.0518 - 2.0114 i
0.000197 - 0.000504 i
16
-2.4552
0.0051 i
17
3.0572
3.2
18
-4.5231
0.153
19
8.7432
0.271 i
20
-16.9931
0.221 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.812 + 0.e-5 i
3.11e-7 + 3.11e-7 i
Singularities of quadratic [11, 10, 10] approximant
2
-0.812 - 0.e-5 i
3.11e-7 - 3.11e-7 i
3
-0.1665 + 0.9009 i
4.01e-7 + 1.58e-6 i
4
-0.1665 - 0.9009 i
4.01e-7 - 1.58e-6 i
5
-0.1665 + 0.9009 i
1.58e-6 - 4.01e-7 i
6
-0.1665 - 0.9009 i
1.58e-6 + 4.01e-7 i
7
1.4634 + 0.4711 i
0.0821 - 0.141 i
8
1.4634 - 0.4711 i
0.0821 + 0.141 i
9
1.8108 + 0.4235 i
0.434 - 0.0439 i
10
1.8108 - 0.4235 i
0.434 + 0.0439 i
11
1.9784
0.465
12
2.0047 + 0.6388 i
0.0467 - 0.817 i
13
2.0047 - 0.6388 i
0.0467 + 0.817 i
14
-2.2596 + 0.0877 i
0.00388 + 0.00408 i
15
-2.2596 - 0.0877 i
0.00388 - 0.00408 i
16
-3.1181
0.0274
17
3.9036
1.15 i
18
-4.3652
2.42 i
19
-5.4913 + 3.7817 i
0.053 + 0.037 i
20
-5.4913 - 3.7817 i
0.053 - 0.037 i
21
10.5277
0.201
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.8479 + 0.e-5 i
4.15e-7 + 4.15e-7 i
Singularities of quadratic [11, 11, 10] approximant
2
-0.8479 - 0.e-5 i
4.15e-7 - 4.15e-7 i
3
-0.1865 + 0.8905 i
1.4e-7 + 1.4e-6 i
4
-0.1865 - 0.8905 i
1.4e-7 - 1.4e-6 i
5
-0.1865 + 0.8905 i
1.4e-6 - 1.4e-7 i
6
-0.1865 - 0.8905 i
1.4e-6 + 1.4e-7 i
7
1.4631 + 0.4712 i
0.0813 - 0.138 i
8
1.4631 - 0.4712 i
0.0813 + 0.138 i
9
1.8094 + 0.4259 i
0.429 - 0.053 i
10
1.8094 - 0.4259 i
0.429 + 0.053 i
11
1.9623
0.468
12
1.9956 + 0.6536 i
0.0375 + 0.676 i
13
1.9956 - 0.6536 i
0.0375 - 0.676 i
14
-2.249 + 0.1043 i
0.0028 + 0.00296 i
15
-2.249 - 0.1043 i
0.0028 - 0.00296 i
16
-2.9945
0.0146
17
3.7153
0.851 i
18
-4.0492
2.14 i
19
-5.5071 + 3.5521 i
0.0489 + 0.0428 i
20
-5.5071 - 3.5521 i
0.0489 - 0.0428 i
21
9.3747
0.191
22
4010.404
18.9 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.3178 + 0.9867 i
3.1e-7 - 1.5e-6 i
Singularities of quadratic [11, 11, 11] approximant
2
-0.3178 - 0.9867 i
3.1e-7 + 1.5e-6 i
3
-0.3178 + 0.9867 i
1.5e-6 + 3.1e-7 i
4
-0.3178 - 0.9867 i
1.5e-6 - 3.1e-7 i
5
-1.0735 + 0.4657 i
1.62e-6 + 1.23e-6 i
6
-1.0735 - 0.4657 i
1.62e-6 - 1.23e-6 i
7
-1.0735 + 0.4657 i
1.23e-6 - 1.62e-6 i
8
-1.0735 - 0.4657 i
1.23e-6 + 1.62e-6 i
9
1.3412 + 0.0014 i
0.00196 - 0.00193 i
10
1.3412 - 0.0014 i
0.00196 + 0.00193 i
11
1.4698 + 0.4853 i
0.182 - 0.0134 i
12
1.4698 - 0.4853 i
0.182 + 0.0134 i
13
1.7758 + 0.6347 i
0.16 - 0.0029 i
14
1.7758 - 0.6347 i
0.16 + 0.0029 i
15
1.9391 + 0.7808 i
0.115 - 0.0959 i
16
1.9391 - 0.7808 i
0.115 + 0.0959 i
17
-2.1656
0.00216
18
2.4129
0.47
19
-2.4889
0.00501 i
20
-4.3165
0.194
21
4.3986
38.6 i
22
-1034.5562
0.118 i
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.