Singularities of Møller-Plesset series: example "bh cc-pvqz 1.5re"

Molecule X 1^Sigma+ State of BH. Basis CC-PVQZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4434 + 0.0105 i
0.0175 - 0.0163 i
Singularities of quadratic [5, 5, 4] approximant
2
1.4434 - 0.0105 i
0.0175 + 0.0163 i
3
1.4413 + 0.4564 i
0.0432 - 0.103 i
4
1.4413 - 0.4564 i
0.0432 + 0.103 i
5
2.8647
0.877
6
-3.2077
0.14
7
-4.4561
4.08 i
8
-6.038
0.178
9
13.1907
0.356 i
10
-28.6331
0.277 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-1.113
0.000349
Singularities of quadratic [5, 5, 5] approximant
2
-1.1132
0.000349 i
3
1.2098
0.0065
4
1.2239
0.0067 i
5
1.4159 + 0.4474 i
0.012 - 0.0697 i
6
1.4159 - 0.4474 i
0.012 + 0.0697 i
7
2.8505
1.06
8
-3.4411
0.987
9
-9.3884
0.162 i
10
37.1937
0.26 i
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.2015
0.00621
Singularities of quadratic [6, 5, 5] approximant
2
1.215
0.00639 i
3
-1.2761
0.000604
4
-1.2765
0.000604 i
5
1.415 + 0.4463 i
0.0104 - 0.0692 i
6
1.415 - 0.4463 i
0.0104 + 0.0692 i
7
2.8618
1.09
8
-3.4682
1.41
9
-10.0322
0.154 i
10
40.8416 + 39.7368 i
0.124 + 0.275 i
11
40.8416 - 39.7368 i
0.124 - 0.275 i
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.366
0.0226
Singularities of quadratic [6, 6, 5] approximant
2
1.4063
0.0253 i
3
1.4249 + 0.4565 i
0.0273 - 0.0833 i
4
1.4249 - 0.4565 i
0.0273 + 0.0833 i
5
-1.1142 + 1.2434 i
0.000936 - 0.00208 i
6
-1.1142 - 1.2434 i
0.000936 + 0.00208 i
7
-1.1159 + 1.2423 i
0.00208 + 0.000936 i
8
-1.1159 - 1.2423 i
0.00208 - 0.000936 i
9
3.0617
1.38
10
-3.4342
1.11
11
13.1585
0.3 i
12
-13.9113
0.163 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4603 + 0.4638 i
0.0693 - 0.179 i
Singularities of quadratic [6, 6, 6] approximant
2
1.4603 - 0.4638 i
0.0693 + 0.179 i
3
1.7208
0.205
4
2.1394 + 0.3208 i
0.805 + 0.343 i
5
2.1394 - 0.3208 i
0.805 - 0.343 i
6
2.252 + 1.0212 i
0.311 + 0.055 i
7
2.252 - 1.0212 i
0.311 - 0.055 i
8
-2.477 + 0.0066 i
0.129 + 0.132 i
9
-2.477 - 0.0066 i
0.129 - 0.132 i
10
-3.5252
0.548
11
-4.7991
0.838 i
12
-10.0505
1.16
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4614 + 0.4794 i
0.125 - 0.123 i
Singularities of quadratic [7, 6, 6] approximant
2
1.4614 - 0.4794 i
0.125 + 0.123 i
3
1.7848 + 0.0502 i
0.095 - 0.0665 i
4
1.7848 - 0.0502 i
0.095 + 0.0665 i
5
2.3672
10.4
6
2.2606 + 0.7648 i
0.707 - 0.343 i
7
2.2606 - 0.7648 i
0.707 + 0.343 i
8
-2.5194
0.0176
9
-2.6197
0.0184 i
10
-4.1125
0.44
11
-7.5446
0.103 i
12
-5.5406 + 10.7287 i
0.0879 - 0.175 i
13
-5.5406 - 10.7287 i
0.0879 + 0.175 i
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4616 + 0.4791 i
0.125 - 0.124 i
Singularities of quadratic [7, 7, 6] approximant
2
1.4616 - 0.4791 i
0.125 + 0.124 i
3
1.791 + 0.0446 i
0.0889 - 0.065 i
4
1.791 - 0.0446 i
0.0889 + 0.065 i
5
2.3473
8.16
6
2.2588 + 0.7677 i
0.703 - 0.33 i
7
2.2588 - 0.7677 i
0.703 + 0.33 i
8
-2.5203
0.0178
9
-2.6203
0.0186 i
10
-4.109
0.45
11
-7.4151
0.103 i
12
-5.8065 + 10.748 i
0.0919 - 0.178 i
13
-5.8065 - 10.748 i
0.0919 + 0.178 i
14
145732.3828
52.9 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4651 + 0.4753 i
0.123 - 0.16 i
Singularities of quadratic [7, 7, 7] approximant
2
1.4651 - 0.4753 i
0.123 + 0.16 i
3
1.8881 + 0.315 i
0.307 - 0.132 i
4
1.8881 - 0.315 i
0.307 + 0.132 i
5
2.1711 + 0.1928 i
0.182 - 0.201 i
6
2.1711 - 0.1928 i
0.182 + 0.201 i
7
2.4709
0.232
8
-2.5335
0.0569
9
-2.5763
0.0585 i
10
3.0072
1.03 i
11
-3.6731
2.33
12
4.7307
0.707
13
-4.7373
0.653 i
14
-9.4469
1.11
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.5956 + 0.e-5 i
0.0000447 - 0.0000447 i
Singularities of quadratic [8, 7, 7] approximant
2
0.5956 - 0.e-5 i
0.0000447 + 0.0000447 i
3
1.4614 + 0.4799 i
0.126 - 0.12 i
4
1.4614 - 0.4799 i
0.126 + 0.12 i
5
1.7733 + 0.0517 i
0.0951 - 0.0653 i
6
1.7733 - 0.0517 i
0.0951 + 0.0653 i
7
2.2648 + 0.7695 i
0.687 - 0.33 i
8
2.2648 - 0.7695 i
0.687 + 0.33 i
9
2.394
17.7
10
-2.5199
0.0181
11
-2.6181
0.0189 i
12
-4.0941
0.481
13
-7.3356
0.104 i
14
-5.8696 + 10.7442 i
0.0966 - 0.179 i
15
-5.8696 - 10.7442 i
0.0966 + 0.179 i
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.3561
1.05e-8
Singularities of quadratic [8, 8, 7] approximant
2
-0.3561
1.05e-8 i
3
1.4628 + 0.4685 i
0.0634 - 0.172 i
4
1.4628 - 0.4685 i
0.0634 + 0.172 i
5
1.8421 + 0.3674 i
0.58 + 0.022 i
6
1.8421 - 0.3674 i
0.58 - 0.022 i
7
1.8703 + 0.5307 i
0.502 + 0.922 i
8
1.8703 - 0.5307 i
0.502 - 0.922 i
9
-2.5084
0.00941
10
-2.6698
0.011 i
11
2.7799
1.44
12
-4.699
0.129
13
2.5418 + 7.6466 i
0.107 + 0.0484 i
14
2.5418 - 7.6466 i
0.107 - 0.0484 i
15
10.9108
0.213 i
16
-2935.6483
10.4 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.3421
7.4e-9
Singularities of quadratic [8, 8, 8] approximant
2
-0.3421
7.4e-9 i
3
1.4626 + 0.4686 i
0.0636 - 0.17 i
4
1.4626 - 0.4686 i
0.0636 + 0.17 i
5
1.8456 + 0.3652 i
0.564 + 0.00784 i
6
1.8456 - 0.3652 i
0.564 - 0.00784 i
7
1.8766 + 0.5341 i
0.481 + 1.01 i
8
1.8766 - 0.5341 i
0.481 - 1.01 i
9
-2.5083
0.00932
10
-2.671
0.0109 i
11
2.7504
1.39
12
-4.7226
0.126
13
2.1532 + 7.3075 i
0.094 + 0.0408 i
14
2.1532 - 7.3075 i
0.094 - 0.0408 i
15
16.3987 + 10.7736 i
0.0205 + 0.254 i
16
16.3987 - 10.7736 i
0.0205 - 0.254 i
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4658 + 0.4713 i
0.0988 - 0.182 i
Singularities of quadratic [9, 8, 8] approximant
2
1.4658 - 0.4713 i
0.0988 + 0.182 i
3
-0.9822 + 1.609 i
0.000154 - 0.000384 i
4
-0.9822 - 1.609 i
0.000154 + 0.000384 i
5
-0.9821 + 1.6091 i
0.000384 + 0.000154 i
6
-0.9821 - 1.6091 i
0.000384 - 0.000154 i
7
1.9022 + 0.3797 i
0.339 + 0.00544 i
8
1.9022 - 0.3797 i
0.339 - 0.00544 i
9
1.9317 + 0.418 i
0.111 - 0.638 i
10
1.9317 - 0.418 i
0.111 + 0.638 i
11
2.4969
0.648
12
-2.5146
0.0107
13
-2.6661
0.0119 i
14
-4.7345
0.123
15
3.2533 + 7.4717 i
0.135 + 0.0202 i
16
3.2533 - 7.4717 i
0.135 - 0.0202 i
17
8.9514
0.232 i
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
1.4662 + 0.4724 i
0.11 - 0.179 i
Singularities of quadratic [9, 9, 8] approximant
2
1.4662 - 0.4724 i
0.11 + 0.179 i
3
1.8754 + 0.388 i
0.407 - 0.064 i
4
1.8754 - 0.388 i
0.407 + 0.064 i
5
2.0646 + 0.3904 i
0.864 - 0.674 i
6
2.0646 - 0.3904 i
0.864 + 0.674 i
7
2.2514
0.361
8
-2.5246
0.0135
9
-2.6592
0.0141 i
10
-1.9847 + 2.0169 i
0.00319 - 0.000446 i
11
-1.9847 - 2.0169 i
0.00319 + 0.000446 i
12
-1.9905 + 2.0221 i
0.000438 + 0.00319 i
13
-1.9905 - 2.0221 i
0.000438 - 0.00319 i
14
-4.8186
0.112
15
7.6255
0.295 i
16
4.2209 + 7.5035 i
0.189 - 0.0143 i
17
4.2209 - 7.5035 i
0.189 + 0.0143 i
18
-1964.7449
13.3 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2533
3.14e-10
Singularities of quadratic [9, 9, 9] approximant
2
-0.2533
3.14e-10 i
3
1.4654 + 0.4681 i
0.0663 - 0.191 i
4
1.4654 - 0.4681 i
0.0663 + 0.191 i
5
1.7889 + 0.3754 i
0.601 + 0.492 i
6
1.7889 - 0.3754 i
0.601 - 0.492 i
7
1.7954 + 0.4711 i
0.471 + 0.297 i
8
1.7954 - 0.4711 i
0.471 - 0.297 i
9
-2.5068
0.00808
10
-2.694
0.00967 i
11
2.8435 + 0.7761 i
0.534 + 0.56 i
12
2.8435 - 0.7761 i
0.534 - 0.56 i
13
4.1134
0.631
14
-2.5356 + 3.3561 i
0.0085 + 0.0122 i
15
-2.5356 - 3.3561 i
0.0085 - 0.0122 i
16
-2.5812 + 3.5252 i
0.0134 - 0.00915 i
17
-2.5812 - 3.5252 i
0.0134 + 0.00915 i
18
-5.5289
0.097
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.1217
0
Singularities of quadratic [10, 9, 9] approximant
2
-0.1217
0
3
0.4989
1.16e-7
4
0.4989
1.16e-7 i
5
1.4682 + 0.474 i
0.139 - 0.19 i
6
1.4682 - 0.474 i
0.139 + 0.19 i
7
1.887
0.197
8
1.9148 + 0.3319 i
0.349 - 0.169 i
9
1.9148 - 0.3319 i
0.349 + 0.169 i
10
2.2264 + 0.5021 i
0.795 + 1.14 i
11
2.2264 - 0.5021 i
0.795 - 1.14 i
12
-2.3071 + 0.0111 i
0.000715 + 0.000727 i
13
-2.3071 - 0.0111 i
0.000715 - 0.000727 i
14
-2.5588 + 0.0983 i
0.00659 + 0.000106 i
15
-2.5588 - 0.0983 i
0.00659 - 0.000106 i
16
-4.3948
0.178
17
1.0268 + 8.2261 i
0.0689 + 0.0681 i
18
1.0268 - 8.2261 i
0.0689 - 0.0681 i
19
60.6231
0.624 i
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.9144 + 0.e-5 i
2.09e-6 + 2.09e-6 i
Singularities of quadratic [10, 10, 9] approximant
2
-0.9144 - 0.e-5 i
2.09e-6 - 2.09e-6 i
3
-0.339 + 0.937 i
2.32e-6 - 5.99e-6 i
4
-0.339 - 0.937 i
2.32e-6 + 5.99e-6 i
5
-0.339 + 0.937 i
5.99e-6 + 2.32e-6 i
6
-0.339 - 0.937 i
5.99e-6 - 2.32e-6 i
7
1.4661 + 0.4718 i
0.105 - 0.184 i
8
1.4661 - 0.4718 i
0.105 + 0.184 i
9
1.9115 + 0.3791 i
0.334 - 0.096 i
10
1.9115 - 0.3791 i
0.334 + 0.096 i
11
1.9773 + 0.3946 i
0.495 + 0.489 i
12
1.9773 - 0.3946 i
0.495 - 0.489 i
13
2.3852
0.517
14
-2.515
0.0116
15
-2.6576
0.0125 i
16
-4.6441
0.133
17
2.3275 + 7.7799 i
0.103 + 0.0459 i
18
2.3275 - 7.7799 i
0.103 - 0.0459 i
19
13.3024
0.222 i
20
-35284.6871
48.9 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.777 + 0.e-5 i
8.33e-7 + 8.33e-7 i
Singularities of quadratic [10, 10, 10] approximant
2
-0.777 - 0.e-5 i
8.33e-7 - 8.33e-7 i
3
-0.1591 + 1.0517 i
7.35e-6 - 9.38e-6 i
4
-0.1591 - 1.0517 i
7.35e-6 + 9.38e-6 i
5
-0.1591 + 1.0517 i
9.38e-6 + 7.35e-6 i
6
-0.1591 - 1.0517 i
9.38e-6 - 7.35e-6 i
7
1.4663 + 0.4724 i
0.112 - 0.183 i
8
1.4663 - 0.4724 i
0.112 + 0.183 i
9
1.9135 + 0.3706 i
0.372 - 0.132 i
10
1.9135 - 0.3706 i
0.372 + 0.132 i
11
2.0755 + 0.402 i
0.994 - 0.539 i
12
2.0755 - 0.402 i
0.994 + 0.539 i
13
2.1737
0.313
14
-2.513
0.0105
15
-2.6654
0.0117 i
16
-4.7496
0.121
17
1.2971 + 6.5224 i
0.0635 + 0.0226 i
18
1.2971 - 6.5224 i
0.0635 - 0.0226 i
19
3.0114 + 9.5301 i
0.0495 - 0.103 i
20
3.0114 - 9.5301 i
0.0495 + 0.103 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7959 + 0.e-5 i
7.22e-7 + 7.22e-7 i
Singularities of quadratic [11, 10, 10] approximant
2
-0.7959 - 0.e-5 i
7.22e-7 - 7.22e-7 i
3
-0.2105 + 1.093 i
0.0000109 - 7.6e-6 i
4
-0.2105 - 1.093 i
0.0000109 + 7.6e-6 i
5
-0.2105 + 1.093 i
7.6e-6 + 0.0000109 i
6
-0.2105 - 1.093 i
7.6e-6 - 0.0000109 i
7
1.4664 + 0.473 i
0.119 - 0.18 i
8
1.4664 - 0.473 i
0.119 + 0.18 i
9
1.9394
0.226
10
1.9629 + 0.3521 i
0.364 - 0.206 i
11
1.9629 - 0.3521 i
0.364 + 0.206 i
12
2.1068 + 0.5315 i
0.537 - 5.69 i
13
2.1068 - 0.5315 i
0.537 + 5.69 i
14
-2.5154
0.0115
15
-2.6596
0.0125 i
16
3.0291
2.07 i
17
4.2178
3.59
18
-4.6824
0.128
19
6.5378
0.231 i
20
2.9482 + 6.9494 i
0.108 + 0.00621 i
21
2.9482 - 6.9494 i
0.108 - 0.00621 i
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.0859
0
Singularities of quadratic [11, 11, 10] approximant
2
-0.0859
0
3
-0.7781 + 0.e-5 i
6.65e-8 + 6.65e-8 i
4
-0.7781 - 0.e-5 i
6.65e-8 - 6.65e-8 i
5
-0.2186 + 1.0514 i
2.37e-6 + 7.17e-7 i
6
-0.2186 - 1.0514 i
2.37e-6 - 7.17e-7 i
7
-0.2186 + 1.0514 i
7.17e-7 - 2.37e-6 i
8
-0.2186 - 1.0514 i
7.17e-7 + 2.37e-6 i
9
1.464 + 0.4733 i
0.101 - 0.151 i
10
1.464 - 0.4733 i
0.101 + 0.151 i
11
1.8375 + 0.421 i
0.435 + 7.35e-6 i
12
1.8375 - 0.421 i
0.435 - 7.35e-6 i
13
2.0953 + 0.4929 i
0.846 + 1.33 i
14
2.0953 - 0.4929 i
0.846 - 1.33 i
15
2.1615
0.383
16
-2.5755 + 0.0473 i
0.0185 + 0.00912 i
17
-2.5755 - 0.0473 i
0.0185 - 0.00912 i
18
-4.5174
0.144
19
3.0641 + 6.9718 i
0.106 - 0.0247 i
20
3.0641 - 6.9718 i
0.106 + 0.0247 i
21
8.5228
0.237 i
22
-648.6199
16.6 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7438 + 0.1237 i
6.43e-8 + 6.15e-8 i
Singularities of quadratic [11, 11, 11] approximant
2
-0.7438 - 0.1237 i
6.43e-8 - 6.15e-8 i
3
-0.7438 + 0.1237 i
6.15e-8 - 6.43e-8 i
4
-0.7438 - 0.1237 i
6.15e-8 + 6.43e-8 i
5
-0.1222 + 1.0951 i
8.44e-6 - 3.99e-6 i
6
-0.1222 - 1.0951 i
8.44e-6 + 3.99e-6 i
7
-0.1222 + 1.0951 i
3.99e-6 + 8.44e-6 i
8
-0.1222 - 1.0951 i
3.99e-6 - 8.44e-6 i
9
1.4668 + 0.4724 i
0.116 - 0.188 i
10
1.4668 - 0.4724 i
0.116 + 0.188 i
11
1.9425 + 0.3492 i
0.307 - 0.169 i
12
1.9425 - 0.3492 i
0.307 + 0.169 i
13
2.0652 + 0.3943 i
0.968 - 0.0928 i
14
2.0652 - 0.3943 i
0.968 + 0.0928 i
15
2.1601
0.288
16
-2.5004
0.00737
17
-2.6883
0.00949 i
18
-4.8526
0.116
19
0.8361 + 6.1286 i
0.0472 + 0.0255 i
20
0.8361 - 6.1286 i
0.0472 - 0.0255 i
21
1.4889 + 8.031 i
0.044 - 0.0653 i
22
1.4889 - 8.031 i
0.044 + 0.0653 i
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.