Singularities of Møller-Plesset series: example "hf aug-cc-pVDZ 2.0r_e"

Molecule X 1^Sigma+ State of HF. Basis AUG-CC-PVDZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5754 + 0.011 i
0.00567 + 0.00699 i
Singularities of quadratic [5, 5, 4] approximant
2
-0.5754 - 0.011 i
0.00567 - 0.00699 i
3
-0.622
0.014
4
1.3349 + 0.4717 i
0.0393 - 0.317 i
5
1.3349 - 0.4717 i
0.0393 + 0.317 i
6
-1.4898
0.511 i
7
2.0627
0.268
8
-1.9762 + 3.1743 i
0.894 + 0.289 i
9
-1.9762 - 3.1743 i
0.894 - 0.289 i
10
15.4612
75.8 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5896 + 0.0143 i
0.0082 + 0.0114 i
Singularities of quadratic [5, 5, 5] approximant
2
-0.5896 - 0.0143 i
0.0082 - 0.0114 i
3
-0.6328
0.0176
4
1.3114 + 0.5051 i
0.131 - 0.212 i
5
1.3114 - 0.5051 i
0.131 + 0.212 i
6
-1.544
0.527 i
7
1.8927
0.242
8
-2.3537 + 2.0461 i
0.0706 - 1.77 i
9
-2.3537 - 2.0461 i
0.0706 + 1.77 i
10
-6.6906
0.916
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5731 + 0.0114 i
0.00428 + 0.00531 i
Singularities of quadratic [6, 5, 5] approximant
2
-0.5731 - 0.0114 i
0.00428 - 0.00531 i
3
-0.6147
0.0103
4
1.2641 + 0.4089 i
0.138 + 0.072 i
5
1.2641 - 0.4089 i
0.138 - 0.072 i
6
-1.6508
0.274 i
7
1.5747 + 0.661 i
0.166 - 0.0712 i
8
1.5747 - 0.661 i
0.166 + 0.0712 i
9
2.1084
5.02
10
-0.9536 + 2.5405 i
0.242 - 0.0743 i
11
-0.9536 - 2.5405 i
0.242 + 0.0743 i
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.566 + 0.0099 i
0.00339 + 0.00401 i
Singularities of quadratic [6, 6, 5] approximant
2
-0.566 - 0.0099 i
0.00339 - 0.00401 i
3
-0.6094
0.00891
4
1.2745 + 0.4251 i
0.105 + 0.0912 i
5
1.2745 - 0.4251 i
0.105 - 0.0912 i
6
-1.7977
0.189 i
7
1.6304 + 0.9748 i
0.133 + 0.0164 i
8
1.6304 - 0.9748 i
0.133 - 0.0164 i
9
-0.7685 + 2.1301 i
0.119 - 0.0295 i
10
-0.7685 - 2.1301 i
0.119 + 0.0295 i
11
4.9099 + 6.171 i
0.356 + 0.00316 i
12
4.9099 - 6.171 i
0.356 - 0.00316 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5625 + 0.0094 i
0.00294 + 0.0034 i
Singularities of quadratic [6, 6, 6] approximant
2
-0.5625 - 0.0094 i
0.00294 - 0.0034 i
3
-0.6065
0.00809
4
1.1485
0.0127
5
1.1682 + 0.1752 i
0.00554 - 0.0172 i
6
1.1682 - 0.1752 i
0.00554 + 0.0172 i
7
1.2997 + 0.7123 i
0.0117 + 0.0885 i
8
1.2997 - 0.7123 i
0.0117 - 0.0885 i
9
-2.0511
0.131 i
10
-0.9758 + 2.1887 i
0.15 - 0.0549 i
11
-0.9758 - 2.1887 i
0.15 + 0.0549 i
12
-3.5498
0.214
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5563 + 0.0067 i
0.00322 + 0.00359 i
Singularities of quadratic [7, 6, 6] approximant
2
-0.5563 - 0.0067 i
0.00322 - 0.00359 i
3
-0.6066
0.0102
4
-0.7271
0.136 i
5
-0.7401
29.1
6
1.2811 + 0.4612 i
0.0615 + 0.192 i
7
1.2811 - 0.4612 i
0.0615 - 0.192 i
8
-1.641
0.3 i
9
1.8277 + 0.731 i
0.208 + 0.0384 i
10
1.8277 - 0.731 i
0.208 - 0.0384 i
11
-1.0793 + 2.381 i
0.258 + 0.00495 i
12
-1.0793 - 2.381 i
0.258 - 0.00495 i
13
4.0844
0.446
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.558 + 0.0068 i
0.00357 + 0.00399 i
Singularities of quadratic [7, 7, 6] approximant
2
-0.558 - 0.0068 i
0.00357 - 0.00399 i
3
-0.6088
0.0111
4
-0.7337
0.144 i
5
-0.7476
24.
6
1.2795 + 0.4768 i
0.00353 + 0.206 i
7
1.2795 - 0.4768 i
0.00353 - 0.206 i
8
-1.6273
0.327 i
9
1.9296 + 0.6241 i
0.236 + 0.0543 i
10
1.9296 - 0.6241 i
0.236 - 0.0543 i
11
-1.1805 + 2.4137 i
0.313 + 0.0439 i
12
-1.1805 - 2.4137 i
0.313 - 0.0439 i
13
4.392
0.485
14
241.1159
58.2 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.4615
0.000262
Singularities of quadratic [7, 7, 7] approximant
2
-0.4617
0.000262 i
3
-0.5559 + 0.0111 i
0.0015 + 0.00149 i
4
-0.5559 - 0.0111 i
0.0015 - 0.00149 i
5
-0.5955
0.00438
6
1.2633 + 0.511 i
0.102 - 0.123 i
7
1.2633 - 0.511 i
0.102 + 0.123 i
8
-1.7802
0.25 i
9
1.8091 + 0.1476 i
0.198 - 0.0556 i
10
1.8091 - 0.1476 i
0.198 + 0.0556 i
11
2.6745
0.589
12
-1.5296 + 2.4584 i
0.685 + 0.00437 i
13
-1.5296 - 2.4584 i
0.685 - 0.00437 i
14
-5.5207
0.601
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.4767
0.000332
Singularities of quadratic [8, 7, 7] approximant
2
-0.4771
0.000331 i
3
-0.5559 + 0.0115 i
0.00142 + 0.00135 i
4
-0.5559 - 0.0115 i
0.00142 - 0.00135 i
5
-0.5946
0.0041
6
1.2573 + 0.5119 i
0.0929 - 0.11 i
7
1.2573 - 0.5119 i
0.0929 + 0.11 i
8
1.7282
0.103
9
-1.7603
0.257 i
10
1.8133
0.146 i
11
2.7914
0.567
12
-1.4714 + 2.3761 i
0.594 + 0.124 i
13
-1.4714 - 2.3761 i
0.594 - 0.124 i
14
-7.8522
0.73
15
10.7159
5.71 i
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5262
0.00144
Singularities of quadratic [8, 8, 7] approximant
2
-0.5305
0.00125 i
3
-0.5663 + 0.0144 i
0.0017 + 0.00138 i
4
-0.5663 - 0.0144 i
0.0017 - 0.00138 i
5
-0.5957
0.00363
6
1.2645 + 0.505 i
0.0818 - 0.142 i
7
1.2645 - 0.505 i
0.0818 + 0.142 i
8
1.9163
0.176
9
-1.9957 + 0.3236 i
0.104 - 0.0947 i
10
-1.9957 - 0.3236 i
0.104 + 0.0947 i
11
2.2341
0.483 i
12
-1.5095 + 2.089 i
0.186 + 0.213 i
13
-1.5095 - 2.089 i
0.186 - 0.213 i
14
-3.1423
0.344 i
15
5.085 + 3.3566 i
0.748 + 0.87 i
16
5.085 - 3.3566 i
0.748 - 0.87 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5247
0.00137
Singularities of quadratic [8, 8, 8] approximant
2
-0.5287
0.00121 i
3
-0.5654 + 0.0142 i
0.00169 + 0.00138 i
4
-0.5654 - 0.0142 i
0.00169 - 0.00138 i
5
-0.5958
0.00372
6
1.2648 + 0.5037 i
0.077 - 0.146 i
7
1.2648 - 0.5037 i
0.077 + 0.146 i
8
1.9079
0.196
9
-2.036
0.103 i
10
-2.4234
0.109
11
2.4829
1.3 i
12
-1.3917 + 2.1157 i
0.202 + 0.121 i
13
-1.3917 - 2.1157 i
0.202 - 0.121 i
14
2.7732 + 3.0469 i
0.243 + 0.433 i
15
2.7732 - 3.0469 i
0.243 - 0.433 i
16
-6.9062
7.29 i
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5301
0.00309
Singularities of quadratic [9, 8, 8] approximant
2
-0.5336
0.0026 i
3
-0.5711 + 0.0132 i
0.00222 + 0.00225 i
4
-0.5711 - 0.0132 i
0.00222 - 0.00225 i
5
-0.6
0.00467
6
1.2351 + 0.4746 i
0.0144 + 0.0731 i
7
1.2351 - 0.4746 i
0.0144 - 0.0731 i
8
1.1009 + 0.7681 i
0.0147 - 0.013 i
9
1.1009 - 0.7681 i
0.0147 + 0.013 i
10
1.1289 + 0.7637 i
0.0141 + 0.0142 i
11
1.1289 - 0.7637 i
0.0141 - 0.0142 i
12
1.8676
0.303
13
-2.0526
0.122 i
14
-2.5158
0.145
15
-1.2993 + 2.4811 i
0.27 - 0.106 i
16
-1.2993 - 2.4811 i
0.27 + 0.106 i
17
-8.857
5.19 i
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5299
0.00294
Singularities of quadratic [9, 9, 8] approximant
2
-0.5335
0.00248 i
3
-0.5709 + 0.0133 i
0.00219 + 0.00219 i
4
-0.5709 - 0.0133 i
0.00219 - 0.00219 i
5
-0.5998
0.00461
6
1.2232 + 0.463 i
0.0229 + 0.0516 i
7
1.2232 - 0.463 i
0.0229 - 0.0516 i
8
1.1469 + 0.6952 i
0.00788 - 0.0239 i
9
1.1469 - 0.6952 i
0.00788 + 0.0239 i
10
1.1778 + 0.6629 i
0.0236 + 0.00463 i
11
1.1778 - 0.6629 i
0.0236 - 0.00463 i
12
1.8779
0.322
13
-2.0686
0.113 i
14
-2.4589
0.131
15
-1.3168 + 2.4497 i
0.28 - 0.0826 i
16
-1.3168 - 2.4497 i
0.28 + 0.0826 i
17
-8.3607
9.13 i
18
871.9178
21.4 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.439 + 0.e-5 i
0.0000608 + 0.0000608 i
Singularities of quadratic [9, 9, 9] approximant
2
-0.439 - 0.e-5 i
0.0000608 - 0.0000608 i
3
-0.5281 + 0.0015 i
0.00177 + 0.00157 i
4
-0.5281 - 0.0015 i
0.00177 - 0.00157 i
5
-0.5699 + 0.0101 i
0.00235 + 0.00378 i
6
-0.5699 - 0.0101 i
0.00235 - 0.00378 i
7
-0.6021
0.00584
8
1.267 + 0.503 i
0.0779 - 0.155 i
9
1.267 - 0.503 i
0.0779 + 0.155 i
10
-1.8787
0.188 i
11
1.9288
0.215
12
-1.3656 + 2.3428 i
0.336 - 0.0204 i
13
-1.3656 - 2.3428 i
0.336 + 0.0204 i
14
2.0039 + 1.8314 i
0.271 + 0.0757 i
15
2.0039 - 1.8314 i
0.271 - 0.0757 i
16
2.7054 + 1.2094 i
0.163 + 0.681 i
17
2.7054 - 1.2094 i
0.163 - 0.681 i
18
-3.4087
0.301
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [10, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5311
0.00171
Singularities of quadratic [10, 9, 9] approximant
2
-0.5375
0.00141 i
3
-0.5722 + 0.0164 i
0.00183 + 0.00151 i
4
-0.5722 - 0.0164 i
0.00183 - 0.00151 i
5
-0.5963
0.00327
6
-0.8336
0.592 i
7
-0.8389
35.8
8
1.2663 + 0.5093 i
0.1 - 0.136 i
9
1.2663 - 0.5093 i
0.1 + 0.136 i
10
-1.6942
0.297 i
11
1.8805 + 0.2124 i
0.229 - 0.0404 i
12
1.8805 - 0.2124 i
0.229 + 0.0404 i
13
-1.4579 + 1.9287 i
0.0939 + 0.427 i
14
-1.4579 - 1.9287 i
0.0939 - 0.427 i
15
2.9784
0.611
16
-1.9967 + 2.6458 i
0.323 - 0.0474 i
17
-1.9967 - 2.6458 i
0.323 + 0.0474 i
18
-0.6373 + 3.8682 i
0.167 + 0.614 i
19
-0.6373 - 3.8682 i
0.167 - 0.614 i
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [10, 10, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.2093
2.59e-8
Singularities of quadratic [10, 10, 9] approximant
2
-0.2093
2.59e-8 i
3
-0.5343 + 0.0032 i
0.00114 + 0.00117 i
4
-0.5343 - 0.0032 i
0.00114 - 0.00117 i
5
-0.5745
0.00747
6
-0.5854
0.116 i
7
-0.6133
0.0125
8
1.2675 + 0.5083 i
0.102 - 0.144 i
9
1.2675 - 0.5083 i
0.102 + 0.144 i
10
-1.6359
0.629 i
11
-1.3058 + 1.0946 i
0.0222 - 0.028 i
12
-1.3058 - 1.0946 i
0.0222 + 0.028 i
13
-1.374 + 1.1209 i
0.0302 + 0.021 i
14
-1.374 - 1.1209 i
0.0302 - 0.021 i
15
1.9577 + 0.1674 i
0.212 - 0.0651 i
16
1.9577 - 0.1674 i
0.212 + 0.0651 i
17
-1.4545 + 1.924 i
0.0485 + 0.118 i
18
-1.4545 - 1.924 i
0.0485 - 0.118 i
19
6.2959 + 0.8075 i
0.684 - 0.312 i
20
6.2959 - 0.8075 i
0.684 + 0.312 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [10, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5279
0.000876
Singularities of quadratic [10, 10, 10] approximant
2
-0.536
0.000702 i
3
-0.5653 + 0.0179 i
0.00118 + 0.000725 i
4
-0.5653 - 0.0179 i
0.00118 - 0.000725 i
5
-0.588
0.00199
6
-0.6665 + 0.3213 i
0.00258 - 0.00538 i
7
-0.6665 - 0.3213 i
0.00258 + 0.00538 i
8
-0.6669 + 0.3212 i
0.00539 + 0.00259 i
9
-0.6669 - 0.3212 i
0.00539 - 0.00259 i
10
1.2674 + 0.5071 i
0.0963 - 0.146 i
11
1.2674 - 0.5071 i
0.0963 + 0.146 i
12
2.03 + 0.1445 i
0.199 - 0.0808 i
13
2.03 - 0.1445 i
0.199 + 0.0808 i
14
-2.1917 + 0.3179 i
0.082 - 0.0996 i
15
-2.1917 - 0.3179 i
0.082 + 0.0996 i
16
-1.3462 + 2.302 i
0.261 - 0.0151 i
17
-1.3462 - 2.302 i
0.261 + 0.0151 i
18
3.0423 + 2.1927 i
0.492 + 0.156 i
19
3.0423 - 2.1927 i
0.492 - 0.156 i
20
-83.8634
0.564 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [11, 10, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.4969
0.0000932
Singularities of quadratic [11, 10, 10] approximant
2
-0.4978
0.0000911 i
3
-0.5372 + 0.0113 i
0.000282 + 0.000227 i
4
-0.5372 - 0.0113 i
0.000282 - 0.000227 i
5
-0.5624
0.00069
6
-0.6461
0.0236 i
7
-0.6605
0.685
8
1.2683 + 0.5068 i
0.0995 - 0.152 i
9
1.2683 - 0.5068 i
0.0995 + 0.152 i
10
-1.532
1.01 i
11
-1.2793 + 1.1551 i
0.0149 + 0.0423 i
12
-1.2793 - 1.1551 i
0.0149 - 0.0423 i
13
-1.3808 + 1.3013 i
0.0395 - 0.0227 i
14
-1.3808 - 1.3013 i
0.0395 + 0.0227 i
15
1.9367
0.181
16
2.4468
0.905 i
17
-1.1421 + 2.1849 i
0.0967 + 0.0172 i
18
-1.1421 - 2.1849 i
0.0967 - 0.0172 i
19
2.3531 + 1.8959 i
0.266 + 0.0938 i
20
2.3531 - 1.8959 i
0.266 - 0.0938 i
21
4.7747
1.06
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [11, 11, 10]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5107
0.000159
Singularities of quadratic [11, 11, 10] approximant
2
-0.5137
0.000144 i
3
-0.5409 + 0.0139 i
0.000312 + 0.000194 i
4
-0.5409 - 0.0139 i
0.000312 - 0.000194 i
5
-0.5637
0.00063
6
-0.6702
0.0565 i
7
-0.684
0.164
8
-1.2838
2.79 i
9
1.2692 + 0.5063 i
0.098 - 0.156 i
10
1.2692 - 0.5063 i
0.098 + 0.156 i
11
-1.5367 + 0.735 i
0.0594 - 0.057 i
12
-1.5367 - 0.735 i
0.0594 + 0.057 i
13
-1.7575 + 0.2018 i
0.047 + 0.0499 i
14
-1.7575 - 0.2018 i
0.047 - 0.0499 i
15
1.9089
0.262
16
1.8882 + 0.4777 i
0.326 + 0.0382 i
17
1.8882 - 0.4777 i
0.326 - 0.0382 i
18
2.347
0.333 i
19
-1.3923 + 2.1517 i
0.17 + 0.0868 i
20
-1.3923 - 2.1517 i
0.17 - 0.0868 i
21
2.6841
0.285
22
16.9119
2.98e3 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [11, 11, 11]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.5155 + 0.0024 i
0.0000788 + 0.0000959 i
Singularities of quadratic [11, 11, 11] approximant
2
-0.5155 - 0.0024 i
0.0000788 - 0.0000959 i
3
-0.5337
0.000191
4
-0.5635 + 0.0433 i
0.000131 + 0.000416 i
5
-0.5635 - 0.0433 i
0.000131 - 0.000416 i
6
-0.5684 + 0.0461 i
0.00052 - 0.000125 i
7
-0.5684 - 0.0461 i
0.00052 + 0.000125 i
8
-0.7727
0.284 i
9
-0.7885
1.83
10
-1.2719
34.6 i
11
1.268 + 0.5047 i
0.0828 - 0.154 i
12
1.268 - 0.5047 i
0.0828 + 0.154 i
13
-1.3814
0.416
14
1.8931 + 0.4456 i
0.329 - 0.00673 i
15
1.8931 - 0.4456 i
0.329 + 0.00673 i
16
-1.972
0.35 i
17
2.0467 + 0.3751 i
0.813 + 0.381 i
18
2.0467 - 0.3751 i
0.813 - 0.381 i
19
-1.842 + 2.1397 i
0.165 + 1.04 i
20
-1.842 - 2.1397 i
0.165 - 1.04 i
21
2.9112
0.469
22
-7.7523
0.695
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.