Singularities of Møller-Plesset series: example "Ne cc-pVDZ"

Molecule Ne. Basis cc-pVDZ. Structure ""

Content


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Quadratic approximants

[n1n2n3] approximant is defined as a solution of the quadratic equation
A(z)f2 +  B(z)f +  C(z) = 0
with polynomial coefficients A(z), B(z) and C(z) of degree n3, n2 and n1 respectively.

Square-root singularities are determined as zeroes of the discriminant
D(z) = B2(z) - 4A(z)C(z).
The weight c of the singularity zc is defined so that
f ~ c(1 - z/zc)1/2 at z -> zc.
The weight is calculated by formula
c = 1/2[-z(D/A2)']1/2
where r. h. s. of the above equation is evaluated at z = zc.

Table 1. Singularities with their weights for the quadratic approximant [3, 3, 2]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-1.7213
0.0343
Singularities of quadratic [3, 3, 2] approximant
2
-2.0715
0.0425 i
3
-1.8145 + 1.7814 i
0.019 + 0.118 i
4
-1.8145 - 1.7814 i
0.019 - 0.118 i
5
4.4232 + 1.1067 i
0.569 + 0.858 i
6
4.4232 - 1.1067 i
0.569 - 0.858 i
Top of Page  Top of the page    

Table 2. Singularities with their weights for the quadratic approximant [3, 3, 3]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6401 + 1.202 i
0.378 - 0.00435 i
Singularities of quadratic [3, 3, 3] approximant
2
-2.6401 - 1.202 i
0.378 + 0.00435 i
3
2.9183
0.359
4
-0.2282 + 4.8803 i
0.534 + 0.22 i
5
-0.2282 - 4.8803 i
0.534 - 0.22 i
6
-8.1308
0.865
Top of Page  Top of the page    

Table 3. Singularities with their weights for the quadratic approximant [4, 3, 3]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.5819 + 0.8233 i
0.243 + 0.634 i
Singularities of quadratic [4, 3, 3] approximant
2
-2.5819 - 0.8233 i
0.243 - 0.634 i
3
3.0776
0.695
4
-1.7433 + 3.6791 i
0.481 + 0.0899 i
5
-1.7433 - 3.6791 i
0.481 - 0.0899 i
6
1.0111 + 5.8127 i
0.0496 - 0.543 i
7
1.0111 - 5.8127 i
0.0496 + 0.543 i
Top of Page  Top of the page    

Table 4. Singularities with their weights for the quadratic approximant [4, 4, 3]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.4452 + 1.1779 i
0.243 + 0.00391 i
Singularities of quadratic [4, 4, 3] approximant
2
-2.4452 - 1.1779 i
0.243 - 0.00391 i
3
3.0221
0.465
4
-0.5642 + 3.7351 i
0.158 + 0.272 i
5
-0.5642 - 3.7351 i
0.158 - 0.272 i
6
-3.5399 + 5.327 i
0.395 + 0.13 i
7
-3.5399 - 5.327 i
0.395 - 0.13 i
8
13.7514
1.41 i
Top of Page  Top of the page    

Table 5. Singularities with their weights for the quadratic approximant [4, 4, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6059 + 0.9048 i
0.375 + 0.474 i
Singularities of quadratic [4, 4, 4] approximant
2
-2.6059 - 0.9048 i
0.375 - 0.474 i
3
3.5156 + 0.5871 i
1.01 - 0.178 i
4
3.5156 - 0.5871 i
1.01 + 0.178 i
5
-1.2265 + 4.1923 i
0.354 - 0.439 i
6
-1.2265 - 4.1923 i
0.354 + 0.439 i
7
5.7503 + 4.6669 i
1.1 + 0.0731 i
8
5.7503 - 4.6669 i
1.1 - 0.0731 i
Top of Page  Top of the page    

Table 6. Singularities with their weights for the quadratic approximant [5, 4, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.605 + 0.9113 i
0.392 + 0.455 i
Singularities of quadratic [5, 4, 4] approximant
2
-2.605 - 0.9113 i
0.392 - 0.455 i
3
3.3866 + 0.6055 i
0.751 - 0.396 i
4
3.3866 - 0.6055 i
0.751 + 0.396 i
5
-1.2593 + 4.2408 i
0.411 - 0.497 i
6
-1.2593 - 4.2408 i
0.411 + 0.497 i
7
6.6596
10.
8
5.2844 + 10.3478 i
1.11 + 0.598 i
9
5.2844 - 10.3478 i
1.11 - 0.598 i
Top of Page  Top of the page    

Table 7. Singularities with their weights for the quadratic approximant [5, 5, 4]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
2.0254 + 0.0095 i
0.0158 - 0.0156 i
Singularities of quadratic [5, 5, 4] approximant
2
2.0254 - 0.0095 i
0.0158 + 0.0156 i
3
-2.6195 + 0.947 i
0.576 + 0.321 i
4
-2.6195 - 0.947 i
0.576 - 0.321 i
5
3.2998
9.14
6
-2.173 + 3.7953 i
0.335 + 0.442 i
7
-2.173 - 3.7953 i
0.335 - 0.442 i
8
0.8909 + 4.5759 i
0.163 - 0.267 i
9
0.8909 - 4.5759 i
0.163 + 0.267 i
10
212.9098
93.6 i
Top of Page  Top of the page    

Table 8. Singularities with their weights for the quadratic approximant [5, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7039
0.000082
Singularities of quadratic [5, 5, 5] approximant
2
-0.7039
0.000082 i
3
-2.5824 + 0.878 i
0.203 + 0.442 i
4
-2.5824 - 0.878 i
0.203 - 0.442 i
5
3.1124 + 0.4988 i
0.0584 + 0.614 i
6
3.1124 - 0.4988 i
0.0584 - 0.614 i
7
3.9952
0.477
8
-0.7905 + 4.2716 i
0.0763 + 0.452 i
9
-0.7905 - 4.2716 i
0.0763 - 0.452 i
10
-38.0357
0.768
Top of Page  Top of the page    

Table 9. Singularities with their weights for the quadratic approximant [6, 5, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.1741
4.51e-8
Singularities of quadratic [6, 5, 5] approximant
2
-0.1741
4.51e-8 i
3
-2.588 + 0.8726 i
0.197 + 0.47 i
4
-2.588 - 0.8726 i
0.197 - 0.47 i
5
3.1422 + 0.5085 i
0.0618 + 0.616 i
6
3.1422 - 0.5085 i
0.0618 - 0.616 i
7
-0.7875 + 4.1655 i
0.0264 + 0.375 i
8
-0.7875 - 4.1655 i
0.0264 - 0.375 i
9
4.3677
0.554
10
-13.0403
1.56
11
14.4482
5.1 i
Top of Page  Top of the page    

Table 10. Singularities with their weights for the quadratic approximant [6, 6, 5]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6246 + 0.898 i
0.432 + 0.515 i
Singularities of quadratic [6, 6, 5] approximant
2
-2.6246 - 0.898 i
0.432 - 0.515 i
3
3.1352 + 0.6042 i
0.324 - 0.381 i
4
3.1352 - 0.6042 i
0.324 + 0.381 i
5
4.2105
0.641
6
-1.0446 + 4.4698 i
0.356 - 0.937 i
7
-1.0446 - 4.4698 i
0.356 + 0.937 i
8
-2.4394 + 8.8738 i
1.07 - 0.0622 i
9
-2.4394 - 8.8738 i
1.07 + 0.0622 i
10
-8.2016 + 4.8537 i
0.727 + 0.784 i
11
-8.2016 - 4.8537 i
0.727 - 0.784 i
12
18.9919
1.71 i
Top of Page  Top of the page    

Table 11. Singularities with their weights for the quadratic approximant [6, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6238 + 0.9024 i
0.439 + 0.489 i
Singularities of quadratic [6, 6, 6] approximant
2
-2.6238 - 0.9024 i
0.439 - 0.489 i
3
3.1174 + 0.6484 i
0.301 - 0.243 i
4
3.1174 - 0.6484 i
0.301 + 0.243 i
5
-0.9669 + 4.3617 i
0.151 - 0.679 i
6
-0.9669 - 4.3617 i
0.151 + 0.679 i
7
4.9178 + 0.0089 i
0.347 - 0.325 i
8
4.9178 - 0.0089 i
0.347 + 0.325 i
9
-5.7052
0.594
10
-6.4109
0.607 i
11
9.3662
8.48
12
-50.7405
0.48
Top of Page  Top of the page    

Table 12. Singularities with their weights for the quadratic approximant [7, 6, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6246 + 0.8995 i
0.437 + 0.507 i
Singularities of quadratic [7, 6, 6] approximant
2
-2.6246 - 0.8995 i
0.437 - 0.507 i
3
3.1332 + 0.6108 i
0.325 - 0.356 i
4
3.1332 - 0.6108 i
0.325 + 0.356 i
5
4.2286
0.664
6
-1.0134 + 4.4297 i
0.261 - 0.838 i
7
-1.0134 - 4.4297 i
0.261 + 0.838 i
8
-8.9294 + 2.6968 i
0.338 + 0.506 i
9
-8.9294 - 2.6968 i
0.338 - 0.506 i
10
12.866
1.96 i
11
-2.6274 + 14.1364 i
0.738 + 0.227 i
12
-2.6274 - 14.1364 i
0.738 - 0.227 i
13
-67.1679
0.955
Top of Page  Top of the page    

Table 13. Singularities with their weights for the quadratic approximant [7, 7, 6]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-2.6247 + 0.8994 i
0.437 + 0.508 i
Singularities of quadratic [7, 7, 6] approximant
2
-2.6247 - 0.8994 i
0.437 - 0.508 i
3
3.1329 + 0.6113 i
0.324 - 0.354 i
4
3.1329 - 0.6113 i
0.324 + 0.354 i
5
4.2312
0.667
6
-1.0111 + 4.4317 i
0.256 - 0.843 i
7
-1.0111 - 4.4317 i
0.256 + 0.843 i
8
-8.8019 + 2.9507 i
0.372 + 0.541 i
9
-8.8019 - 2.9507 i
0.372 - 0.541 i
10
11.7184
2.16 i
11
-4.636 + 13.1486 i
0.726 + 0.0774 i
12
-4.636 - 13.1486 i
0.726 - 0.0774 i
13
42.9551 + 26.4481 i
0.982 - 1.8 i
14
42.9551 - 26.4481 i
0.982 + 1.8 i
Top of Page  Top of the page    

Table 14. Singularities with their weights for the quadratic approximant [7, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.1551
6.09e-9 - 6.09e-9 i
Singularities of quadratic [7, 7, 7] approximant
2
0.1551
6.09e-9 + 6.09e-9 i
3
-2.6245 + 0.8995 i
0.436 + 0.507 i
4
-2.6245 - 0.8995 i
0.436 - 0.507 i
5
3.1332 + 0.6103 i
0.323 - 0.359 i
6
3.1332 - 0.6103 i
0.323 + 0.359 i
7
4.2351
0.666
8
-1.0101 + 4.4287 i
0.248 - 0.833 i
9
-1.0101 - 4.4287 i
0.248 + 0.833 i
10
-8.6106 + 2.159 i
0.387 + 0.507 i
11
-8.6106 - 2.159 i
0.387 - 0.507 i
12
12.0686
2.12 i
13
-3.0545 + 13.6385 i
0.794 + 0.187 i
14
-3.0545 - 13.6385 i
0.794 - 0.187 i
Top of Page  Top of the page    

Table 15. Singularities with their weights for the quadratic approximant [8, 7, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.6808
1.85e-6
Singularities of quadratic [8, 7, 7] approximant
2
0.6808
1.85e-6 i
3
-2.6317 + 0.8989 i
0.498 + 0.559 i
4
-2.6317 - 0.8989 i
0.498 - 0.559 i
5
3.1367 + 0.6401 i
0.403 - 0.211 i
6
3.1367 - 0.6401 i
0.403 + 0.211 i
7
-1.1255 + 3.2318 i
0.0456 + 0.031 i
8
-1.1255 - 3.2318 i
0.0456 - 0.031 i
9
-1.0974 + 3.2964 i
0.0298 - 0.0455 i
10
-1.0974 - 3.2964 i
0.0298 + 0.0455 i
11
3.9932
0.588
12
-0.5775 + 4.3899 i
0.321 + 0.114 i
13
-0.5775 - 4.3899 i
0.321 - 0.114 i
14
-0.8027 + 9.5786 i
0.612 + 1.87 i
15
-0.8027 - 9.5786 i
0.612 - 1.87 i
Top of Page  Top of the page    

Table 16. Singularities with their weights for the quadratic approximant [8, 8, 7]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-1.2003 + 0.e-5 i
0.000116 + 0.000116 i
Singularities of quadratic [8, 8, 7] approximant
2
-1.2003 - 0.e-5 i
0.000116 - 0.000116 i
3
0.9843 + 1.5102 i
0.000655 + 0.000135 i
4
0.9843 - 1.5102 i
0.000655 - 0.000135 i
5
0.9843 + 1.5104 i
0.000135 - 0.000655 i
6
0.9843 - 1.5104 i
0.000135 + 0.000655 i
7
-2.6351 + 0.8923 i
0.479 + 0.653 i
8
-2.6351 - 0.8923 i
0.479 - 0.653 i
9
3.1392 + 0.6894 i
0.377 + 0.00223 i
10
3.1392 - 0.6894 i
0.377 - 0.00223 i
11
3.8155
0.53
12
-0.856 + 4.3027 i
0.0474 + 0.413 i
13
-0.856 - 4.3027 i
0.0474 - 0.413 i
14
-1.305 + 9.3696 i
1.53 + 2.44 i
15
-1.305 - 9.3696 i
1.53 - 2.44 i
16
1462.7229
28.2 i
Top of Page  Top of the page    

Table 17. Singularities with their weights for the quadratic approximant [8, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.6226 + 0.e-5 i
3.38e-6 - 3.38e-6 i
Singularities of quadratic [8, 8, 8] approximant
2
0.6226 - 0.e-5 i
3.38e-6 + 3.38e-6 i
3
-0.8592 + 0.e-5 i
0.0000382 + 0.0000382 i
4
-0.8592 - 0.e-5 i
0.0000382 - 0.0000382 i
5
-2.6258 + 0.8991 i
0.445 + 0.518 i
6
-2.6258 - 0.8991 i
0.445 - 0.518 i
7
3.1326 + 0.6055 i
0.305 - 0.378 i
8
3.1326 - 0.6055 i
0.305 + 0.378 i
9
4.279
0.68
10
-1.019 + 4.4108 i
0.28 - 0.762 i
11
-1.019 - 4.4108 i
0.28 + 0.762 i
12
10.7768
2.44 i
13
-10.1949 + 4.1405 i
0.31 + 0.508 i
14
-10.1949 - 4.1405 i
0.31 - 0.508 i
15
-4.2787 + 13.8254 i
0.721 + 0.0713 i
16
-4.2787 - 13.8254 i
0.721 - 0.0713 i
Top of Page  Top of the page    

Table 18. Singularities with their weights for the quadratic approximant [9, 8, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
0.3723 + 0.5649 i
1.55e-6 - 3.44e-7 i
Singularities of quadratic [9, 8, 8] approximant
2
0.3723 - 0.5649 i
1.55e-6 + 3.44e-7 i
3
0.3723 + 0.5649 i
3.44e-7 + 1.55e-6 i
4
0.3723 - 0.5649 i
3.44e-7 - 1.55e-6 i
5
-2.6299 + 0.9012 i
0.494 + 0.524 i
6
-2.6299 - 0.9012 i
0.494 - 0.524 i
7
3.1385 + 0.6477 i
0.415 - 0.174 i
8
3.1385 - 0.6477 i
0.415 + 0.174 i
9
-1.7151 + 2.8581 i
0.0293 - 0.0581 i
10
-1.7151 - 2.8581 i
0.0293 + 0.0581 i
11
-1.7564 + 2.8766 i
0.0597 + 0.0283 i
12
-1.7564 - 2.8766 i
0.0597 - 0.0283 i
13
3.9631
0.578
14
-0.697 + 4.4293 i
0.378 + 0.3 i
15
-0.697 - 4.4293 i
0.378 - 0.3 i
16
-0.8737 + 9.6414 i
0.719 + 1.83 i
17
-0.8737 - 9.6414 i
0.719 - 1.83 i
Top of Page  Top of the page    

Table 19. Singularities with their weights for the quadratic approximant [9, 9, 8]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.8629 + 0.8031 i
0.0000592 + 0.0000843 i
Singularities of quadratic [9, 9, 8] approximant
2
-0.8629 - 0.8031 i
0.0000592 - 0.0000843 i
3
-0.8629 + 0.8031 i
0.0000843 - 0.0000592 i
4
-0.8629 - 0.8031 i
0.0000843 + 0.0000592 i
5
0.9169 + 1.0351 i
0.0000787 - 0.0000952 i
6
0.9169 - 1.0351 i
0.0000787 + 0.0000952 i
7
0.9169 + 1.0351 i
0.0000952 + 0.0000787 i
8
0.9169 - 1.0351 i
0.0000952 - 0.0000787 i
9
-2.6359 + 0.8931 i
0.494 + 0.652 i
10
-2.6359 - 0.8931 i
0.494 - 0.652 i
11
3.1436 + 0.6896 i
0.392 + 0.0139 i
12
3.1436 - 0.6896 i
0.392 - 0.0139 i
13
3.8167
0.527
14
-0.8431 + 4.3183 i
0.0795 + 0.423 i
15
-0.8431 - 4.3183 i
0.0795 - 0.423 i
16
-1.2967 + 9.4805 i
1.43 + 2.23 i
17
-1.2967 - 9.4805 i
1.43 - 2.23 i
18
2514.6436
34.4 i
Top of Page  Top of the page    

Table 20. Singularities with their weights for the quadratic approximant [9, 9, 9]
The most stable singularity is highlighted.
No. zcc Location in the complex plane
1
-0.7378 + 0.8613 i
0.0000716 + 0.0000233 i
Singularities of quadratic [9, 9, 9] approximant
2
-0.7378 - 0.8613 i
0.0000716 - 0.0000233 i
3
-0.7378 + 0.8613 i
0.0000233 - 0.0000716 i
4
-0.7378 - 0.8613 i
0.0000233 + 0.0000716 i
5
1.0241 + 1.0927 i
0.000106 - 0.000163 i
6
1.0241 - 1.0927 i
0.000106 + 0.000163 i
7
1.0241 + 1.0927 i
0.000163 + 0.000106 i
8
1.0241 - 1.0927 i
0.000163 - 0.000106 i
9
-2.6347 + 0.8948 i
0.497 + 0.625 i
10
-2.6347 - 0.8948 i
0.497 - 0.625 i
11
3.144 + 0.7039 i
0.362 + 0.0599 i
12
3.144 - 0.7039 i
0.362 - 0.0599 i
13
3.7741
0.51
14
-0.8543 + 4.2962 i
0.0439 + 0.403 i
15
-0.8543 - 4.2962 i
0.0439 - 0.403 i
16
-1.4426 + 9.2668 i
1.76 + 2.64 i
17
-1.4426 - 9.2668 i
1.76 - 2.64 i
18
-344.4615
16.7
Top of Page  Top of the page    


ExamplesAr cc-pVDZbh aug-cc-pVQZ 0.9r_ebh aug-cc-pVQZ 1.0r_ebh aug-cc-pVQZ 1.1r_ebh aug-cc-pVQZ 1.2r_ebh aug-cc-pVQZ 1.3r_ebh aug-cc-pVQZ 1.4r_ebh aug-cc-pVQZ 1.5r_ebh aug-cc-pVQZ 1.6r_ebh aug-cc-pVQZ 1.7r_ebh aug-cc-pVQZ 1.8r_ebh aug-cc-pVQZ 1.9r_ebh aug-cc-pVQZ 2.0r_ebh aug-cc-pVQZ 2.1r_ebh aug-cc-pVQZ 2.2r_ebh cc-pvdz 1.5rebh cc-pvdz 2rebh cc-pvdz rebh cc-pvqz 1.5rebh cc-pvqz 2rebh cc-pvqz rebh cc-pvtz 1.5rebh cc-pvtz 2rebh cc-pvtz reh- cc-pv5zh- cc-pvqzhf aug-cc-pVDZ 1.5r_ehf aug-cc-pVDZ 2.0r_ehf aug-cc-pVDZ r_ehf cc-pvdz 1.5rehf cc-pvdz 2rehf cc-pvdz 2rehf cc-pvdz rena-pl aug-cc-pvdzNe cc-pVDZo2- aug-cc-pvdz
MoleculeArX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHX 1^Sigma+ State of BHH- ionH- ionX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFX 1^Sigma+ State of HFNa+NeX 1^Sigma+ State of O2-
Basiscc-pVDZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZAUG-CC-PVQZCC-PVDZCC-PVDZCC-PVDZCC-PVQZCC-PVQZCC-PVQZCC-PVTZCC-PVTZCC-PVTZAUG-CC-PV5ZAUG-CC-PVQZAUG-CC-PVDZAUG-CC-PVDZAUG-CC-PVDZCC-PVDZCC-PVDZCC-PVDZCC-PVDZAUG-CC-PVDZcc-pVDZAUG-CC-PVDZ

Plot of singularities Blank Molecule - icon for Allen-dataList of examples Blank Mathematica programs Blank Work in UMassD Blank Waste iconUnpublished reports

Designed by A. Sergeev.