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Abstract
Herein we present an accurate correction to the Thomas–Fermi (TF) approximation for the non-
interacting kinetic energy. The correction is derived from an entirely solvable model and not
through the application of the truncated gradient expansion. The used approach exploits the
comparable nature of the difference between the TF approximation and the non-interacting
kinetic energy and its analogue within a model of non-interacting electrons that resembles the
actually studied problem. For the atom, the used model is a system of N non-interacting electrons
moving independently in the Coulomb field of the nuclear charge. It is shown numerically that
this correction enhances the accuracy of the TF approximation for atoms by an order of
magnitude.
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1. Introduction

The original density functional theory (DFT) is based on the
prominent work of Hohenberg and Kohn [1], where it was
proved that the ground state of a many-electron system is
completely characterized by its electronic density and that the
energy functional attains its minimum at the density of the
system in its ground state. However, expressing the kinetic
energy as a density functional has proven to be a challenging
task. The difficulty is apparent as the accuracy is undesirably
insufficient and the proposed kinetic energy density func-
tionals (KEDF) have had limited applications [2–5]. Alter-
natively, Kohn and Sham (KS-DFT) [6] suggested an
approach where the ‘orbitals’ are reintroduced while the sum
of these orbitals’ individual densities is equal to the total
density of the real system, yet only while the kinetic energy is
defined as that of the imposed ‘fictitious’ system. Within the
framework of KS-DFT, this means converting the problem
back from three-dimensional (3D) to 3N-dimensional—where
N is the number of the particles. N orbitals are determined by
solving the governing N equations self-consistently [6–8].
Despite this computational drawback, KS-DFT presently
dominates the field of atomistic calculations [7]. Surviving in

parallel to KS-DFT, efforts to find an accurate KEDF are still
modestly active. In recent years, this effort has started gaining
more attention [5, 9–11]. To distinguish this DFT doctrine
from KS-DFT (which depends on application of orbitals), the
method is referred to as ‘orbital-free’ DFT [12, 13].

Since the first independently proposed KEDF by Thomas
[14] and Fermi [15] (TF), a huge number of KEDFs has been
suggested. However, TF model with various corrections
dominates the field [3, 11, 13]. The usual corrections are
either based on gradient expansion [16–18] or they are
obtained by adding other forms of KEDF [11, 19–21]. Fur-
thermore, TF-based KEDF are used in some applications
satisfying the assumption that the density is nearly uniform.
For example, they are used for metals [22] and warm dense
matter [23, 24]. As for the correction, it would be abstractly
assumed that the gradient expansion should pave a reasonable
route. However, it is known that the high order gradient-based
corrections diverge for finite systems. Therefore, seeking a
non-gradient-expansion based correction is desirable. One of
the recent corrections suggested by Burke and coworkers [5]
is based on uniform WKB analysis in the one-dimensional
case. The correction has neither sums nor derivatives.
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In this paper, we present a new non-gradient based
method to enhance the TF approximation by adding a cor-
rection factor derived using an exactly solvable model. The
used model is for N non-interacting particles moving in the
Coulomb field of the nuclear charge. It allows one to calculate
part of the energy using the simple Rydberg formula and to
express the particle density in an analytic form through
Laguerre polynomials and exponential functions. The cor-
rection exploits the fact that the difference between the TF
approximation and the non-interacting kinetic energy is
comparable to the difference between the same values within
the proposed solvable model. The concept can be presented
best using the following equation

r r r= + - » + -T T T T T T T ,

1

Z Z
s TF s TF TF TF( )( )[ ] [ ] [ ] ˜ ˜

( )

( ) ( )

where Ts is the non-interacting kinetic energy and TTF is TF
approximation. In the same equation, we use the notation T Z˜ ( )

and T Z
TF

˜ ( ) for the kinetic energy and the TF energy of the
proposed model. These values are labeled by a superscript Z( )
to show that the central field for the model is the same as for
the atom. Our work follows a similar approach that was
developed to estimate the correlation energy for two-electron
atoms [25]. In our numerical experiments, we show that the
correction factor can increase the precision of TF approxima-
tion by around an order of magnitude for atoms. To apply it
for molecules, or other potential systems, the method needs
further extensions in the sense of using a solvable model
which resembles the particular problem of interest. As is
shown in (1), the kinetic energy is expressed as TF energy
plus the correction obtained from the exactly solvable model.
We calculated the results numerically for noble and alkali-
earth atoms up to radon (Z = 88). Our results appear to be
more accurate in comparison with TF approximation by a
factor between 11 (for helium) and 101 (for barium). We also
discuss the large-Z limit of the energy and the density and
compare the gradient expansion for atoms with that for the
model.

2. The correction

As aforementioned, the general idea of the proposed correc-
tion is that the difference between the TF approximation and
the non-interacting kinetic energy is comparable to the dif-
ference between the same values within a solvable model
providing that the used model resembles the actual studied
problem, as shown in (1). This approach follows a successful
and analogous method used to estimate the correlation energy
for two-electron atoms [25]. Although the model of an N non-
interacting particles is restricted to the Coulomb field of the
nuclear charge, the method can be applied for a wide range of
potential models. The focus of the paper is to present the
approach and to illustrate its applicability for simple systems
such as atoms. So, we suggest a model that in many respects
resembles the atoms and that has an analytical quantum-
mechanical solution. Another important reason for selecting

such a model is that it is possible to write the correction
-T TZ Z

TF
˜ ˜( ) ( ) as a function of the electric charge Z only. Fur-

thermore, this form for T Z˜ ( ) and T Z
TF

˜ ( ) provides more in-depth
understanding of the model as will be shown.

Since we are interested in an equivalent system of non-
interacting particles, the energy T Z˜ ( ) does not include corre-
lation effects. The inter-electron interaction affects the
effective potential and therefore the difference between our
model and an atom is disregarding the screening of nuclear
charge by inner electrons. The presented model retains Cou-
lomb singularity at the origin, as well as Coulomb attraction
for large distance, however the attraction force at large dis-
tance is much larger in the presented model. The region of
applicability of the TF model, m

- p rd d 1,1 where

m= -mp V2( ) and μ is the chemical potential, is violated
in a small region of radius = -r Z0

1 adjoining the nucleus,
where quantum effects become significant. In the neighbor-
hood of the nucleus, the field is practically identical to the
Coulomb field -Z r. Unlike the approach of Kirzhnits and
Shpatakovskaya [26] where the quantum corrections to the TF
model were calculated in a neighborhood of nuclei, we treat
the Coulomb problem exactly, without considering the
quantum corrections separately.

The assumed model has the same nuclear charge Z = N
as the atom under consideration. Thus, the screened Coulomb
potential for the atom has the same behavior -Z r at the
origin, but differs greatly from it. Without inter-particle
interaction, each electron can be considered as occupying an
orbital characterized by the principal quantum number
= ¼n 1, 2, . For example, two electrons with n = 1 in a

configuration 1s2 form the closest inner K-shell (in x-ray
notations), eight electrons with n = 2 form L-shell in a
configuration 2s 2p .2 6 Generally, a completely filled nth shell
has n2 2 electrons with possible quantum numbers
= ¼ -l n0, 1, , 1, = - - + ¼m l l l, 1, , , and spins

s =  .1

2
Let us denote nmax as the quantum number of the last

shell with a non-zero occupation number. In the ground state,
all lowest shells with <n nmax are completely filled, while
the last shell with =n nmax can be filled either partially or
completely. For simplicity, we consider initially only the
states in closed-shell configurations, i.e. when all shells up to
=n nmax are completely filled. The same model can be

extended for other configurations either by considering
angular dependence or simply by interpolation between
closed shells as will be shown later. The total number of
electrons on shells with = ¼n n1, 2, , max can be obtained
by summation of the occupation numbers for each individual
shell

å= = + +
=

N n n n n2
1

3
1 2 1 . 2

n

n

1

2
max max max

max

( )( ) ( )

The kinetic energy of the proposed model can be cal-
culated by exploiting the kinetic energies for individual
orbitals. This energy for each orbital is given by Rydberg
formula, that is Z n22 2( ) in atomic units, where n is the

2
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principal quantum number. Atomic units are used throughout
this paper. Now, the total kinetic energy can be calculated by
summation of contributions from each shell

å= =
=

⎛
⎝⎜

⎞
⎠⎟T n

Z

n
n Z2

2
, 3Z

n

n

1

2
2

2 max
2

max

˜ ( )( )

where the kinetic energy of the model T Z˜ ( ) corresponds to the
same value in (1).

To fully specify the proposed functional, we also need to
calculate the TF approximation of energy for the model. As
previously stated, the T Z

TF
˜ ( ) can be presented as a function of

the electric charge Z when the proposed model is used. For
closed-shell configurations which are spherically symmetric,
TF kinetic energy is

òr p t=
=

¥
T r r r4 d , 4

r
TF

0

2
0[ ] ( ) ( )

where the KEDF t0 is

t p r=
 
r r

3

10
3 . 50

2 2 3 5 3( )( ) ( ) ( )

To calculate the TF approximation using (4) for the used
model, it is necessary to have the corresponding electron
density r.˜ The density r̃ can be obtained by combining the
wave functions for individual electrons as follows. A wave-
function of an electron on the orbital n l m, ,( ) is

y q f=

r R r Y , , 6n l m n l l m, , , ,( ) ( ) ( ) ( )

where n l m, ,( ) are the principal, orbital, and azimuthal
quantum numbers respectively, q fY ,l m, ( ) is the spherical
harmonic, and q f,( ) are polar and azimuthal angles
respectively. In (6), Rn l, is the radial component of the
wavefunction expressed through Laguerre polynomials as
follows
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´ - - -
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Using (6), the electronic density r̃ is given as the sum

åå år q f=
= =

-

=-


r R r Y , . 8

n

n

l

n

m l

l

n l l m
1 0

1

,
2

,
2

max

( )˜ ( ) ( ) ( )

By exploiting the properties of the spherical harmonics and by
summing over m, the above equation is reduced to

åår
p

= +
= =

-

r l R r
1

4
2 1 , 9

n

n

l

n

n l
1 0

1

,
2

max

˜( ) ( ) ( ) ( )

which is angular independent. Finally, the value of T Z
TF

˜ ( ) can be
calculated by substitution of r̃ given by equations (9) and (7)
into (4).

After determining the values of T Z˜ ( ) and T ,Z
TF

˜ ( ) we can
explicitly write the functional for calculating the kinetic
energy of an atom using the correction based on the proposed

model. The new functional is given by the following equation

r r d= +T Z T T, , 10Z
s TF[ ] [ ] ˜ ( )( )

where dT Z˜ ( ) is found by considering the exactly solvable
model with the same nuclear charge Z,

d = -T T T . 11Z Z Z
TF

˜ ˜ ˜ ( )( ) ( ) ( )

When using the proposed functional for the kinetic
energy of an atom, we would calculate the TTF based on some
electron density approximation and the correction using the
value of Z. In practical application, it is necessary to consider
the case when the last shell is partially filled. In such cases, it
is not possible to apply (2) directly with an integer nmax. Since
the closed shells occur only for a few values of the nuclear
charge given by the sequence of ‘magic numbers’

¼2, 10, 28, 60, 110, , we need to define the interpolation of
the function dZ T Z˜ ( ) to other integer values of Z. Here, we
use an interpolation by a cubic polynomial through four data
points at Z = 2, 10, 28, and 60:

d = -
+ +

T Z
Z Z

0.212 10 0.198 60
0.128 15 0.000 10 . 12

Z

2 3

˜
( )

( )

3. The Z expansion of the model

For many applications, it is more convenient to express the
energy of the system through the total nuclear charge Z . The
energy as a function of the nuclear charge can be obtained by
solving (2) in respect to nmax and by substituting the result
into (3),

= + -

= + -

- - -T D D Z

D Z Z

1

2
3 3 1 ,

54 2916 3 . 13

Z 1 3 1 2 3 2

2
1 3( )

( )˜

( )

( )

A more suitable format for (13) is in the form of an expansion
in powers of -Z 1 3. The transformed equation has the
following form

~ -

+
´

-
´

+
´

+- -

T Z Z

Z Z

Z O Z

3 2
1

2
1

6 12

1

3888 18
1

69 984 12
, 14

Z 1 3 7 3 2

1 3
5 3

1 3
1 3

1 3
1 3 5 3( )

˜ ( )

( )

( )

where the terms proportional to   Z Z Z, ,4 3 1 2 3, and Z 0 are
identically zero. Numerically, it is simply

~ - +
- + +- -

T Z Z Z

Z Z O Z

1.144 714 0.5 0.072 798

0.000 098 0.000 006 . 15

Z 7 3 2 5 3

1 3 1 3 5 3( )
˜

( )

( )

With the goal of being able to assess the model, we
compare (15) with the corresponding expansion of the non-
interacting kinetic energy of an atom with large nuclear
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charge Z . This expansion can be derived using the virial
theorem from the corresponding expansion of the total energy
and can be written as an asymptotic series in powers of a
small parameter -Z 1 3 [27, 28]

~ - +T Z Z Z0.768 745 0.5 0.269 900 . 16s
7 3 2 5 3 ( )

The most significant difference between equations (15) and
(16) is the leading term. This is mainly due to the inclusion of
Coulomb repulsion between electrons which decreases the
leading term ~Z 7 3 by a factor of 1.489 because of the
increase of the size of the atom. The second subdominant
term ~Z2 remains the same. This term comprises the
correction of strongly bound electrons [29, 30] which is not
affected by the inter-electron repulsion.

To assess the accuracy of the TF approximation, we
analyze the asymptotic behavior of the TF energy in the limit
of large number of electrons =N Z . To estimate the large-N
behavior, we have calculated T Z

TF
˜ ( ) for increasing values of

nmax and found, using Richardsonʼs extrapolation [31], that
for large nmax

~ - +T Z Z Z1.144 714 0.625 856 0.146 878 .

17

Z
TF

7 3 2 5 3˜

( )

( )

We characterize the accuracy of the approximation by
comparing the terms of the expansion (17) with the
corresponding terms in (15) [32]. We find that the TF
approximation correctly reproduces the leading term
1.144 714 Z 7 3, but makes a 25% error in the subdominant
term - Z0.5 .2 Thus we can say following the definition from
[33] that the TF approximation is large-N asymptotically
exact to the zero degree (AE0).

Comparing equations (15) and (17), we obtain

d = - ~ -T T T Z Z0.126 0.074 , 18Z Z Z
TF

2 5 3˜ ˜ ˜ ( )( ) ( ) ( )

which is close to the same quantity for atoms,
r- ~T T Z0.16s TF

2[ ] [28]. Thus, our approximation given
by (1) is exact in the leading term Z0.768 745 7 3 and it makes
only a small 7% error ( -Z Z0.16 0.1262 2) in the sub-
dominant term - Z0.5 ,2 i.e. it is large-N asymptotically exact
almost to the first degree (AE1).

4. Numerical results and discussion

In this section, the developed functional and the presented
approach are implemented for verification. First we compare
the electron density of the proposed model with its large-Z
limit. Then, we compare the kinetic energy of the model with
the known TF gradient expansion. Finally, we perform
computational experiments to show that the proposed func-
tional gives a significant improvement to the standard TF
approximation when applied to atoms. An improvement by
about an order of magnitude is achieved.

4.1. Electron density in the limit of large Z

In this subsection, we analyze the behavior of electron density
of the proposed model for different values of the nuclear

charge Z and compare it to the one acquired using the TF
formalism. We start with some remarks regarding the density
of the model. In section 2, the electron density is derived from
the wavefunction as a sum of +n n 1 2max max( ) terms given
by (9). For large Z, the number of terms grows to infinity.
Here, we use an alternative approach based on TF formalism
to derive the limit of the density for large values of Z in a
more explicit way. Without an inter-particle interaction, the
TF equation relating the electron density and the potential
takes especially simple form[34]

r
p

m= - V
1

3
2 , 19

2
3 2[ ( )] ( )

where μ can be determined from the equation (assuming
spherical symmetry)

ò p r =r r r N4 d . 20
r

0

2
m

( ) ( )

In (20), N is the number of electrons and rm is the TF radius of
the atom, or a turning point in the potential V, that is
determined from the equation

m=V r . 21m( ) ( )

For the Coulomb potential = -V Z r, we obtain

m
= -r

Z
. 22m ( )

From equations (20) and (22), it can be shown that

= -r Z N3 2 . 23m
1 2 3( ) ( )

As we consider the case of a neutral atom (N = Z), then,
the dependence on Z can be eliminated by introducing scaled
radius and scaled electron density

=r Z r, 241 3ˆ ( )

r r= Z , 252ˆ ( )

so that now (19) can be rewritten as

r
p

= - -⎜ ⎟⎛
⎝

⎞
⎠r

2 2

3

1
18 26

2
1 3

3 2

ˆ
ˆ

( )

if <r rmˆ ˆ and zero otherwise, where the scaled turning point is

=r 18 . 27m
1 3ˆ ( )

Figure 1 shows the scaled densities
r r= - -r Z Z r ,2 1 3ˆ ( ˆ) ˜( ˆ) where r̃ is given by (8) for increasing
numbers of electronic shells, =n 1, 2, 3, 5,max calculated
using (8) together with the limiting case given by (26). It is
clear that the deviation from the TF limit, r r- TFˆ ˆ is an
oscillating function having exactly nmax local maxima, see the
insert in figure 1. The amplitude of the oscillations decreases
as Z increases. These oscillation effects are related to the shell
structure, with maxima corresponding to the filled shells.
Clearly, the TF model describes only the averaged physical
quantities, and so it requires a special generalization [35] to
treat such spatial irregularities. In the recent paper of Burke
and coworkers [5], their approximation improves the accuracy
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everywhere including the turning points and reproduces the
oscillations.

4.2. TF versus gradient expansion for the exactly solvable
model

The leading term of the gradient expansion for the kinetic
energy is just the TF energy given by equations (4) and (5).
We use the notation r= =T T T .0

0
TF [ ]( ) The second order

term is defined through Weizsäcker correction TW as

òp
r

r
= =

¢

=

¥
T T T r r

1

9
, 4

8
d , 28

r
2 W W

0

2

2( )
( )

and the second order approximation is = +T T T ,2
0 2

( ) where
spherical symmetry is assumed. In fourth order of the gradient
expansion, we have

òp t= = + +
=

¥
T r r r T T T T4 d , , 29

r
4

0

2
4

4
0 2 4( ) ( )( )

where

t
p

r
r

r

r r

r

r

r

=
+ 

-
+  ¢

+
¢

r

r

- ¢

¢


⎡

⎣

⎢⎢⎢
⎤

⎦
⎥⎥⎥

r
3

540

2

9

8

2 1

3
. 30

r

r

4

2 2 3

1 3

2

2

2

3

4

4

( )

( )( ) ( )

( )( )

( )

There were several studies of the gradient expansion for
atoms [36–38]. The TF method always underestimates the
energy, and the accuracy slowly improves with increase of
number of electrons, remaining on the level of a few percent
even for heavy atoms. The first correction of the gradient
expansion always improves the accuracy, but applying the
fourth-order correction typically makes the results worse. The
analysis of trends of the gradient expansion for atoms remains
somehow inconclusive, because of very slow asymptotical
behavior (typically as ~ -Z 1 3) and because of shell effects
(oscillations of density).

For the exactly solvable model, relative error as a func-
tion of the number of shells is shown on figure 2, where the
non-interacting kinetic energy =T T Z

s ˜ ( ) is defined by (3), the

TF energy is defined by (4), and the gradient expansion is
defined by equations (28) and (29). For the exactly solvable
model, the relative error to Ts is shown on figure 2 as a
function of the number of shells. The values for
T T T, ,0 2 4( ) ( ) ( ) are calculated by substituting r̃ into the cor-
responding equations.

For large Z, the second order correction clearly improves
the accuracy by a factor of 6, and including the fourth-order
correction improves the accuracy by an additional factor of 3.
However, this trend is visible only for large nmax, starting
from »n 10max corresponding to unrealistic >Z 1000. It
explains the fact that the fourth order correction for atoms
improves the accuracy only for very heavy atoms.

Asymptotic behavior of accuracy at large Z is shown on
figure 3. The asymptotical expansion for the TF energy has
been presented in the previous section and has the form given
in (17). In a similar way the terms of gradient expansion were

Figure 1. Scaled densities for increasing values of Z and the TF limit
at  ¥Z .

Figure 2. Relative error of Ts for TF ( r=T T ,0
TF [ ]( ) marked by

circles), second ( = +T T T ,2
0 2

( ) square markers), and fourth-order
approximation ( = + +T T T T ,4

0 2 4
( ) diamond markers) in gradient

expansion. The relative errors are defined as -T T Tn
s s( )( ) where

=n 0, 2, 4.

Figure 3. Relative error in logarithmic scale for very large number of
electronic shells for TF approximation and the approximations
including second- and fourth-order terms of gradient expansion. The
markers are the same as in figure 2. Since the asymptotic dependence
is linear with the tangent (−1) in all cases, it shows that the relative
errors at large Z are proportional to -Z 1 3 in all cases.
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determined numerically and have the following form

~ + + ¼T Z Z0.109 42 0.045 . 312
2 5 3 ( )

Notice that the expansion in (31) starts from the term Z2, i.e.
the coefficient of the leading term ~Z 7 3 is zero. This
statement can be proven rigorously too, by calculating the
integral (28) using the same semiclassical approximation. A
similar expansion (starting from the term ∼Z2) was found for
the fourth-order correction to the kinetic energy

~ + + ¼T Z Z0.015 052 0.0078 . 324
2 5 3 ( )

These calculation show that the leading term of the exact
energy, Z1.447 ,7 3 is absorbed by the leading term of TF
energy, and the subdominant term of the exact energy,
~- Z0.5 ,2 can be accurately resummed by selecting the cor-
responding terms in the series r= + +T T T T .4

TF 2 4[ ]( )

4.3. Calculations for atoms

In this subsection we discuss the effectiveness of the func-
tional given by (10) for calculating the kinetic energy of
atoms. This is done by comparing the results with the values
of Ts taken from the paper [28]. To show explicitly the
advantages of the proposed functional we compare the kinetic
energies calculated using the new approach with the TF
approximation and the standard functionals based on gradient
expansion. The TF energies along with the second- and
fourth-order gradient corrections are taken from the same
source [28]. The correction dT Z˜ ( ) was calculated by (11) in the
case of closed shell atoms and by (12) in partially filled cases.
The results are shown in table 1.

We found that including the correction dT Z˜ ( ) increases
the accuracy of TF approximation by more than ten times.
The results almost always give the upper bound for the kinetic
energy.

Overall, the same table shows that the proposed method
is competitive with functionals based on the second- and
fourth-order gradient expansions in respect to the precision. It

manages to give a lower error than the second/fourth-order
gradient expansion for all tested atoms with the nuclear
charge less than 50, except for helium. From the tabulated
results, it is noticeable that the new functional is more robust
than the other functionals in the sense that it performs well
both for small and for large atoms.

5. Conclusion

In this paper we have presented a non-gradient-based cor-
rection to the TF functional for atoms. The presented
approach is general and should be extendable for molecules,
if a suitable solvable model is used. The method uses an
auxiliary system of non-interacting electrons that is in many
respects similar to the atomic system with the same number of
electrons. It results in simplifying the calculation considerably
comparing to the one based on the gradient expansion. The
obtained accuracy is improved by at least an order of mag-
nitude in comparison to the TF model. Our numerical test also
shows that the proposed method manages to achieve similar
or slightly better precision than the standard gradient based
functionals. As for the density, our presented approach allows
the characteristic shell oscillations.

This type of approach can potentially be extended to
systems other than atoms. One example is the modeling on N-
electron quantum dots, where we could consider another
solvable model, of N non-interacting particles bound in a
harmonic potential. Our initial test on this problem has given
promising results.
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